Abstract:Recent efforts have incorporated large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning. However, these efforts have largely been piecemeal, lacking a systematic framework for constructing a fully-fledged language agent. To address this challenge, we draw on the rich history of agent design in symbolic artificial intelligence to develop a blueprint for a new wave of cognitive language agents. We first show that LLMs have many of the same properties as production systems, and recent efforts to improve their grounding or reasoning mirror the development of cognitive architectures built around production systems. We then propose Cognitive Architectures for Language Agents (CoALA), a conceptual framework to systematize diverse methods for LLM-based reasoning, grounding, learning, and decision making as instantiations of language agents in the framework. Finally, we use the CoALA framework to highlight gaps and propose actionable directions toward more capable language agents in the future.
Abstract:Instruction-following agents must ground language into their observation and action spaces. Learning to ground language is challenging, typically requiring domain-specific engineering or large quantities of human interaction data. To address this challenge, we propose using pretrained vision-language models (VLMs) to supervise embodied agents. We combine ideas from model distillation and hindsight experience replay (HER), using a VLM to retroactively generate language describing the agent's behavior. Simple prompting allows us to control the supervision signal, teaching an agent to interact with novel objects based on their names (e.g., planes) or their features (e.g., colors) in a 3D rendered environment. Fewshot prompting lets us teach abstract category membership, including pre-existing categories (food vs toys) and ad-hoc ones (arbitrary preferences over objects). Our work outlines a new and effective way to use internet-scale VLMs, repurposing the generic language grounding acquired by such models to teach task-relevant groundings to embodied agents.