Recent efforts have incorporated large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning. However, these efforts have largely been piecemeal, lacking a systematic framework for constructing a fully-fledged language agent. To address this challenge, we draw on the rich history of agent design in symbolic artificial intelligence to develop a blueprint for a new wave of cognitive language agents. We first show that LLMs have many of the same properties as production systems, and recent efforts to improve their grounding or reasoning mirror the development of cognitive architectures built around production systems. We then propose Cognitive Architectures for Language Agents (CoALA), a conceptual framework to systematize diverse methods for LLM-based reasoning, grounding, learning, and decision making as instantiations of language agents in the framework. Finally, we use the CoALA framework to highlight gaps and propose actionable directions toward more capable language agents in the future.