IMS-CL, University of Stuttgart
Abstract:The senses of a word exhibit rich internal structure. In a typical lexicon, this structure is overlooked: a word's senses are encoded as a list without inter-sense relations. We present ChainNet, a lexical resource which for the first time explicitly identifies these structures. ChainNet expresses how senses in the Open English Wordnet are derived from one another: every nominal sense of a word is either connected to another sense by metaphor or metonymy, or is disconnected in the case of homonymy. Because WordNet senses are linked to resources which capture information about their meaning, ChainNet represents the first dataset of grounded metaphor and metonymy.
Abstract:We are interested in the generation of navigation instructions, either in their own right or as training material for robotic navigation task. In this paper, we propose a new approach to navigation instruction generation by framing the problem as an image captioning task using semantic maps as visual input. Conventional approaches employ a sequence of panorama images to generate navigation instructions. Semantic maps abstract away from visual details and fuse the information in multiple panorama images into a single top-down representation, thereby reducing computational complexity to process the input. We present a benchmark dataset for instruction generation using semantic maps, propose an initial model and ask human subjects to manually assess the quality of generated instructions. Our initial investigations show promise in using semantic maps for instruction generation instead of a sequence of panorama images, but there is vast scope for improvement. We release the code for data preparation and model training at https://github.com/chengzu-li/VLGen.
Abstract:The introduction of large public legal datasets has brought about a renaissance in legal NLP. Many of these datasets are comprised of legal judgements - the product of judges deciding cases. This fact, together with the way machine learning works, means that several legal NLP models are models of judges. While some have argued for the automation of judges, in this position piece, we argue that automating the role of the judge raises difficult ethical challenges, in particular for common law legal systems. Our argument follows from the social role of the judge in actively shaping the law, rather than merely applying it. Since current NLP models come nowhere close to having the facilities necessary for this task, they should not be used to automate judges. Furthermore, even in the case the models could achieve human-level capabilities, there would still be remaining ethical concerns inherent in the automation of the legal process.
Abstract:Linguists distinguish between novel and conventional metaphor, a distinction which the metaphor detection task in NLP does not take into account. Instead, metaphoricity is formulated as a property of a token in a sentence, regardless of metaphor type. In this paper, we investigate the limitations of treating conventional metaphors in this way, and advocate for an alternative which we name 'metaphorical polysemy detection' (MPD). In MPD, only conventional metaphoricity is treated, and it is formulated as a property of word senses in a lexicon. We develop the first MPD model, which learns to identify conventional metaphors in the English WordNet. To train it, we present a novel training procedure that combines metaphor detection with word sense disambiguation (WSD). For evaluation, we manually annotate metaphor in two subsets of WordNet. Our model significantly outperforms a strong baseline based on a state-of-the-art metaphor detection model, attaining an ROC-AUC score of .78 (compared to .65) on one of the sets. Additionally, when paired with a WSD model, our approach outperforms a state-of-the-art metaphor detection model at identifying conventional metaphors in text (.659 F1 compared to .626).
Abstract:A widely acknowledged shortcoming of WordNet is that it lacks a distinction between word meanings which are systematically related (polysemy), and those which are coincidental (homonymy). Several previous works have attempted to fill this gap, by inferring this information using computational methods. We revisit this task, and exploit recent advances in language modelling to synthesise homonymy annotation for Princeton WordNet. Previous approaches treat the problem using clustering methods; by contrast, our method works by linking WordNet to the Oxford English Dictionary, which contains the information we need. To perform this alignment, we pair definitions based on their proximity in an embedding space produced by a Transformer model. Despite the simplicity of this approach, our best model attains an F1 of .97 on an evaluation set that we annotate. The outcome of our work is a high-quality homonymy annotation layer for Princeton WordNet, which we release.
Abstract:Every legal case sets a precedent by developing the law in one of the following two ways. It either expands its scope, in which case it sets positive precedent, or it narrows it down, in which case it sets negative precedent. While legal outcome prediction, which is nothing other than the prediction of positive precedents, is an increasingly popular task in AI, we are the first to investigate negative precedent prediction by focusing on negative outcomes. We discover an asymmetry in existing models' ability to predict positive and negative outcomes. Where state-of-the-art outcome prediction models predicts positive outcomes at 75.06 F1, they predicts negative outcomes at only 10.09 F1, worse than a random baseline. To address this performance gap, we develop two new models inspired by the dynamics of a court process. Our first model significantly improves positive outcome prediction score to 77.15 F1 and our second model more than doubles the negative outcome prediction performance to 24.01 F1. Despite this improvement, shifting focus to negative outcomes reveals that there is still plenty of room to grow when it comes to modelling law.
Abstract:While there exist scores of natural languages, each with its unique features and idiosyncrasies, they all share a unifying theme: enabling human communication. We may thus reasonably predict that human cognition shapes how these languages evolve and are used. Assuming that the capacity to process information is roughly constant across human populations, we expect a surprisal--duration trade-off to arise both across and within languages. We analyse this trade-off using a corpus of 600 languages and, after controlling for several potential confounds, we find strong supporting evidence in both settings. Specifically, we find that, on average, phones are produced faster in languages where they are less surprising, and vice versa. Further, we confirm that more surprising phones are longer, on average, in 319 languages out of the 600. We thus conclude that there is strong evidence of a surprisal--duration trade-off in operation, both across and within the world's languages.
Abstract:Homophony's widespread presence in natural languages is a controversial topic. Recent theories of language optimality have tried to justify its prevalence, despite its negative effects on cognitive processing time; e.g., Piantadosi et al. (2012) argued homophony enables the reuse of efficient wordforms and is thus beneficial for languages. This hypothesis has recently been challenged by Trott and Bergen (2020), who posit that good wordforms are more often homophonous simply because they are more phonotactically probable. In this paper, we join in on the debate. We first propose a new information-theoretic quantification of a language's homophony: the sample R\'enyi entropy. Then, we use this quantification to revisit Trott and Bergen's claims. While their point is theoretically sound, a specific methodological issue in their experiments raises doubts about their results. After addressing this issue, we find no clear pressure either towards or against homophony -- a much more nuanced result than either Piantadosi et al.'s or Trott and Bergen's findings.
Abstract:Argumentative structure prediction aims to establish links between textual units and label the relationship between them, forming a structured representation for a given input text. The former task, linking, has been identified by earlier works as particularly challenging, as it requires finding the most appropriate structure out of a very large search space of possible link combinations. In this paper, we improve a state-of-the-art linking model by using multi-task and multi-corpora training strategies. Our auxiliary tasks help the model to learn the role of each sentence in the argumentative structure. Combining multi-corpora training with a selective sampling strategy increases the training data size while ensuring that the model still learns the desired target distribution well. Experiments on essays written by English-as-a-foreign-language learners show that both strategies significantly improve the model's performance; for instance, we observe a 15.8% increase in the F1-macro for individual link predictions.
Abstract:This paper treats gender bias latent in word embeddings. Previous mitigation attempts rely on the operationalisation of gender bias as a projection over a linear subspace. An alternative approach is Counterfactual Data Augmentation (CDA), in which a corpus is duplicated and augmented to remove bias, e.g. by swapping all inherently-gendered words in the copy. We perform an empirical comparison of these approaches on the English Gigaword and Wikipedia, and find that whilst both successfully reduce direct bias and perform well in tasks which quantify embedding quality, CDA variants outperform projection-based methods at the task of drawing non-biased gender analogies by an average of 19% across both corpora. We propose two improvements to CDA: Counterfactual Data Substitution (CDS), a variant of CDA in which potentially biased text is randomly substituted to avoid duplication, and the Names Intervention, a novel name-pairing technique that vastly increases the number of words being treated. CDA/S with the Names Intervention is the only approach which is able to mitigate indirect gender bias: following debiasing, previously biased words are significantly less clustered according to gender (cluster purity is reduced by 49%), thus improving on the state-of-the-art for bias mitigation.