Tokyo Institute of Technology
Abstract:This paper presents the first dataset for Japanese Legal Judgment Prediction (LJP), the Japanese Tort-case Dataset (JTD), which features two tasks: tort prediction and its rationale extraction. The rationale extraction task identifies the court's accepting arguments from alleged arguments by plaintiffs and defendants, which is a novel task in the field. JTD is constructed based on annotated 3,477 Japanese Civil Code judgments by 41 legal experts, resulting in 7,978 instances with 59,697 of their alleged arguments from the involved parties. Our baseline experiments show the feasibility of the proposed two tasks, and our error analysis by legal experts identifies sources of errors and suggests future directions of the LJP research.
Abstract:Argumentative structure prediction aims to establish links between textual units and label the relationship between them, forming a structured representation for a given input text. The former task, linking, has been identified by earlier works as particularly challenging, as it requires finding the most appropriate structure out of a very large search space of possible link combinations. In this paper, we improve a state-of-the-art linking model by using multi-task and multi-corpora training strategies. Our auxiliary tasks help the model to learn the role of each sentence in the argumentative structure. Combining multi-corpora training with a selective sampling strategy increases the training data size while ensuring that the model still learns the desired target distribution well. Experiments on essays written by English-as-a-foreign-language learners show that both strategies significantly improve the model's performance; for instance, we observe a 15.8% increase in the F1-macro for individual link predictions.
Abstract:This paper proposes an efficient example sampling method for example-based word sense disambiguation systems. To construct a database of practical size, a considerable overhead for manual sense disambiguation (overhead for supervision) is required. In addition, the time complexity of searching a large-sized database poses a considerable problem (overhead for search). To counter these problems, our method selectively samples a smaller-sized effective subset from a given example set for use in word sense disambiguation. Our method is characterized by the reliance on the notion of training utility: the degree to which each example is informative for future example sampling when used for the training of the system. The system progressively collects examples by selecting those with greatest utility. The paper reports the effectiveness of our method through experiments on about one thousand sentences. Compared to experiments with other example sampling methods, our method reduced both the overhead for supervision and the overhead for search, without the degeneration of the performance of the system.
Abstract:This paper proposes an efficient example selection method for example-based word sense disambiguation systems. To construct a practical size database, a considerable overhead for manual sense disambiguation is required. Our method is characterized by the reliance on the notion of the training utility: the degree to which each example is informative for future example selection when used for the training of the system. The system progressively collects examples by selecting those with greatest utility. The paper reports the effectivity of our method through experiments on about one thousand sentences. Compared to experiments with random example selection, our method reduced the overhead without the degeneration of the performance of the system.