Tokyo Institute of Technology
Abstract:This paper proposes an efficient example sampling method for example-based word sense disambiguation systems. To construct a database of practical size, a considerable overhead for manual sense disambiguation (overhead for supervision) is required. In addition, the time complexity of searching a large-sized database poses a considerable problem (overhead for search). To counter these problems, our method selectively samples a smaller-sized effective subset from a given example set for use in word sense disambiguation. Our method is characterized by the reliance on the notion of training utility: the degree to which each example is informative for future example sampling when used for the training of the system. The system progressively collects examples by selecting those with greatest utility. The paper reports the effectiveness of our method through experiments on about one thousand sentences. Compared to experiments with other example sampling methods, our method reduced both the overhead for supervision and the overhead for search, without the degeneration of the performance of the system.
Abstract:This paper proposes an efficient example selection method for example-based word sense disambiguation systems. To construct a practical size database, a considerable overhead for manual sense disambiguation is required. Our method is characterized by the reliance on the notion of the training utility: the degree to which each example is informative for future example selection when used for the training of the system. The system progressively collects examples by selecting those with greatest utility. The paper reports the effectivity of our method through experiments on about one thousand sentences. Compared to experiments with random example selection, our method reduced the overhead without the degeneration of the performance of the system.