Abstract:Continual learning (CL) addresses the problem of catastrophic forgetting in neural networks, which occurs when a trained model tends to overwrite previously learned information, when presented with a new task. CL aims to instill the lifelong learning characteristic of humans in intelligent systems, making them capable of learning continuously while retaining what was already learned. Current CL problems involve either learning new domains (domain-incremental) or new and previously unseen classes (class-incremental). However, general learning processes are not just limited to learning information, but also refinement of existing information. In this paper, we define CLEO - Continual Learning of Evolving Ontologies, as a new incremental learning setting under CL to tackle evolving classes. CLEO is motivated by the need for intelligent systems to adapt to real-world ontologies that change over time, such as those in autonomous driving. We use Cityscapes, PASCAL VOC, and Mapillary Vistas to define the task settings and demonstrate the applicability of CLEO. We highlight the shortcomings of existing CIL methods in adapting to CLEO and propose a baseline solution, called Modelling Ontologies (MoOn). CLEO is a promising new approach to CL that addresses the challenge of evolving ontologies in real-world applications. MoOn surpasses previous CL approaches in the context of CLEO.
Abstract:Part-aware panoptic segmentation is a problem of computer vision that aims to provide a semantic understanding of the scene at multiple levels of granularity. More precisely, semantic areas, object instances, and semantic parts are predicted simultaneously. In this paper, we present our Joint Panoptic Part Fusion (JPPF) that combines the three individual segmentations effectively to obtain a panoptic-part segmentation. Two aspects are of utmost importance for this: First, a unified model for the three problems is desired that allows for mutually improved and consistent representation learning. Second, balancing the combination so that it gives equal importance to all individual results during fusion. Our proposed JPPF is parameter-free and dynamically balances its input. The method is evaluated and compared on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic Parts (PPP) datasets in terms of PartPQ and Part-Whole Quality (PWQ). In extensive experiments, we verify the importance of our fair fusion, highlight its most significant impact for areas that can be further segmented into parts, and demonstrate the generalization capabilities of our design without fine-tuning on 5 additional datasets.
Abstract:The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.