Abstract:Part-aware panoptic segmentation is a problem of computer vision that aims to provide a semantic understanding of the scene at multiple levels of granularity. More precisely, semantic areas, object instances, and semantic parts are predicted simultaneously. In this paper, we present our Joint Panoptic Part Fusion (JPPF) that combines the three individual segmentations effectively to obtain a panoptic-part segmentation. Two aspects are of utmost importance for this: First, a unified model for the three problems is desired that allows for mutually improved and consistent representation learning. Second, balancing the combination so that it gives equal importance to all individual results during fusion. Our proposed JPPF is parameter-free and dynamically balances its input. The method is evaluated and compared on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic Parts (PPP) datasets in terms of PartPQ and Part-Whole Quality (PWQ). In extensive experiments, we verify the importance of our fair fusion, highlight its most significant impact for areas that can be further segmented into parts, and demonstrate the generalization capabilities of our design without fine-tuning on 5 additional datasets.
Abstract:In this paper, we introduce a novel network that generates semantic, instance, and part segmentation using a shared encoder and effectively fuses them to achieve panoptic-part segmentation. Unifying these three segmentation problems allows for mutually improved and consistent representation learning. To fuse the predictions of all three heads efficiently, we introduce a parameter-free joint fusion module that dynamically balances the logits and fuses them to create panoptic-part segmentation. Our method is evaluated on the Cityscapes Panoptic Parts (CPP) and Pascal Panoptic Parts (PPP) datasets. For CPP, the PartPQ of our proposed model with joint fusion surpasses the previous state-of-the-art by 1.6 and 4.7 percentage points for all areas and segments with parts, respectively. On PPP, our joint fusion outperforms a model using the previous top-down merging strategy by 3.3 percentage points in PartPQ and 10.5 percentage points in PartPQ for partitionable classes.