Abstract:This paper explains the generalization power of a deep neural network (DNN) from the perspective of interactive concepts. Many recent studies have quantified a clear emergence of interactive concepts encoded by the DNN, which have been observed on different DNNs during the learning process. Therefore, in this paper, we investigate the generalization power of each interactive concept, and we use the generalization power of different interactive concepts to explain the generalization power of the entire DNN. Specifically, we define the complexity of each interactive concept. We find that simple concepts can be better generalized to testing data than complex concepts. The DNN with strong generalization power usually learns simple concepts more quickly and encodes fewer complex concepts. More crucially, we discover the detouring dynamics of learning complex concepts, which explain both the high learning difficulty and the low generalization power of complex concepts.
Abstract:Deep learning models have been deployed in numerous real-world applications such as autonomous driving and surveillance. However, these models are vulnerable in adversarial environments. Backdoor attack is emerging as a severe security threat which injects a backdoor trigger into a small portion of training data such that the trained model behaves normally on benign inputs but gives incorrect predictions when the specific trigger appears. While most research in backdoor attacks focuses on image classification, backdoor attacks on object detection have not been explored but are of equal importance. Object detection has been adopted as an important module in various security-sensitive applications such as autonomous driving. Therefore, backdoor attacks on object detection could pose severe threats to human lives and properties. We propose four kinds of backdoor attacks for object detection task: 1) Object Generation Attack: a trigger can falsely generate an object of the target class; 2) Regional Misclassification Attack: a trigger can change the prediction of a surrounding object to the target class; 3) Global Misclassification Attack: a single trigger can change the predictions of all objects in an image to the target class; and 4) Object Disappearance Attack: a trigger can make the detector fail to detect the object of the target class. We develop appropriate metrics to evaluate the four backdoor attacks on object detection. We perform experiments using two typical object detection models -- Faster-RCNN and YOLOv3 on different datasets. More crucially, we demonstrate that even fine-tuning on another benign dataset cannot remove the backdoor hidden in the object detection model. To defend against these backdoor attacks, we propose Detector Cleanse, an entropy-based run-time detection framework to identify poisoned testing samples for any deployed object detector.
Abstract:An engaging and provocative question can open up a great conversation. In this work, we explore a novel scenario: a conversation agent views a set of the user's photos (for example, from social media platforms) and asks an engaging question to initiate a conversation with the user. The existing vision-to-question models mostly generate tedious and obvious questions, which might not be ideals conversation starters. This paper introduces a two-phase framework that first generates a visual story for the photo set and then uses the story to produce an interesting question. The human evaluation shows that our framework generates more response-provoking questions for starting conversations than other vision-to-question baselines.
Abstract:This paper aims to theoretically analyze the complexity of feature transformations encoded in DNNs with ReLU layers. We propose metrics to measure three types of complexities of transformations based on the information theory. We further discover and prove the strong correlation between the complexity and the disentanglement of transformations. Based on the proposed metrics, we analyze two typical phenomena of the change of the transformation complexity during the training process, and explore the ceiling of a DNN's complexity. The proposed metrics can also be used as a loss to learn a DNN with the minimum complexity, which also controls the over-fitting level of the DNN and influences adversarial robustness, adversarial transferability, and knowledge consistency. Comprehensive comparative studies have provided new perspectives to understand the DNN.