Abstract:Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning-based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. Furthermore, we show the quantitative significance of syntax to neural SRL models together with a thorough empirical survey using existing models.
Abstract:The latest developments in neural semantic role labeling (SRL), including both dependency and span representation formalisms, have shown great performance improvements. Although the two styles share many similarities in linguistic meaning and computation, most previous studies focus on a single style. In this paper, we define a new cross-style semantic role label convention and propose a new cross-style joint optimization model designed according to the linguistic meaning of semantic role, which provides an agreed way to make the results of two styles more comparable and let both types of SRL enjoy their natural connection on both linguistics and computation. Our model learns a general semantic argument structure and is capable of outputting optional style alone. Additionally, we propose a syntax aided method to enhance the learning of both dependency and span representations uniformly. Experiments show that the proposed methods are effective on both span (CoNLL-2005) and dependency (CoNLL-2009) SRL benchmarks.
Abstract:Recently, semantic role labeling (SRL) has earned a series of success with even higher performance improvements, which can be mainly attributed to syntactic integration and enhanced word representation. However, most of these efforts focus on English, while SRL on multiple languages more than English has received relatively little attention so that is kept underdevelopment. Thus this paper intends to fill the gap on multilingual SRL with special focus on the impact of syntax and contextualized word representation. Unlike existing work, we propose a novel method guided by syntactic rule to prune arguments, which enables us to integrate syntax into multilingual SRL model simply and effectively. We present a unified SRL model designed for multiple languages together with the proposed uniform syntax enhancement. Our model achieves new state-of-the-art results on the CoNLL-2009 benchmarks of all seven languages. Besides, we pose a discussion on the syntactic role among different languages and verify the effectiveness of deep enhanced representation for multilingual SRL.
Abstract:Semantic role labeling (SRL) aims to discover the predicateargument structure of a sentence. End-to-end SRL without syntactic input has received great attention. However, most of them focus on either span-based or dependency-based semantic representation form and only show specific model optimization respectively. Meanwhile, handling these two SRL tasks uniformly was less successful. This paper presents an end-to-end model for both dependency and span SRL with a unified argument representation to deal with two different types of argument annotations in a uniform fashion. Furthermore, we jointly predict all predicates and arguments, especially including long-term ignored predicate identification subtask. Our single model achieves new state-of-the-art results on both span (CoNLL 2005, 2012) and dependency (CoNLL 2008, 2009) SRL benchmarks.
Abstract:Character-level representations have been broadly adopted to alleviate the problem of effectively representing rare or complex words. However, character itself is not a natural minimal linguistic unit for representation or word embedding composing due to ignoring the linguistic coherence of consecutive characters inside word. This paper presents a general subword-augmented embedding framework for learning and composing computationally-derived subword-level representations. We survey a series of unsupervised segmentation methods for subword acquisition and different subword-augmented strategies for text understanding, showing that subword-augmented embedding significantly improves our baselines in multiple text understanding tasks on both English and Chinese languages.
Abstract:The goal of semantic role labeling (SRL) is to discover the predicate-argument structure of a sentence, which plays a critical role in deep processing of natural language. This paper introduces simple yet effective auxiliary tags for dependency-based SRL to enhance a syntax-agnostic model with multi-hop self-attention. Our syntax-agnostic model achieves competitive performance with state-of-the-art models on the CoNLL-2009 benchmarks both for English and Chinese.
Abstract:Who did what to whom is a major focus in natural language understanding, which is right the aim of semantic role labeling (SRL). Although SRL is naturally essential to text comprehension tasks, it is surprisingly ignored in previous work. This paper thus makes the first attempt to let SRL enhance text comprehension and inference through specifying verbal arguments and their corresponding semantic roles. In terms of deep learning models, our embeddings are enhanced by semantic role labels for more fine-grained semantics. We show that the salient labels can be conveniently added to existing models and significantly improve deep learning models in challenging text comprehension tasks. Extensive experiments on benchmark machine reading comprehension and inference datasets verify that the proposed semantic learning helps our system reach new state-of-the-art.
Abstract:Semantic role labeling (SRL) is to recognize the predicate-argument structure of a sentence, including subtasks of predicate disambiguation and argument labeling. Previous studies usually formulate the entire SRL problem into two or more subtasks. For the first time, this paper introduces an end-to-end neural model which unifiedly tackles the predicate disambiguation and the argument labeling in one shot. Using a biaffine scorer, our model directly predicts all semantic role labels for all given word pairs in the sentence without relying on any syntactic parse information. Specifically, we augment the BiLSTM encoder with a non-linear transformation to further distinguish the predicate and the argument in a given sentence, and model the semantic role labeling process as a word pair classification task by employing the biaffine attentional mechanism. Though the proposed model is syntax-agnostic with local decoder, it outperforms the state-of-the-art syntax-aware SRL systems on the CoNLL-2008, 2009 benchmarks for both English and Chinese. To our best knowledge, we report the first syntax-agnostic SRL model that surpasses all known syntax-aware models.