Abstract:Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning-based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. Furthermore, we show the quantitative significance of syntax to neural SRL models together with a thorough empirical survey using existing models.
Abstract:Easy-first parsing relies on subtree re-ranking to build the complete parse tree. Whereas the intermediate state of parsing processing are represented by various subtrees, whose internal structural information is the key lead for later parsing action decisions, we explore a better representation for such subtrees. In detail, this work introduces a bottom-up subtree encoder based on the child-sum tree-LSTM. Starting from an easy-first dependency parser without other handcraft features, we show that the effective subtree encoder does promote the parsing process, and is able to make a greedy search easy-first parser achieve promising results on benchmark treebanks compared to state-of-the-art baselines.
Abstract:Semantic role labeling (SRL) is to recognize the predicate-argument structure of a sentence, including subtasks of predicate disambiguation and argument labeling. Previous studies usually formulate the entire SRL problem into two or more subtasks. For the first time, this paper introduces an end-to-end neural model which unifiedly tackles the predicate disambiguation and the argument labeling in one shot. Using a biaffine scorer, our model directly predicts all semantic role labels for all given word pairs in the sentence without relying on any syntactic parse information. Specifically, we augment the BiLSTM encoder with a non-linear transformation to further distinguish the predicate and the argument in a given sentence, and model the semantic role labeling process as a word pair classification task by employing the biaffine attentional mechanism. Though the proposed model is syntax-agnostic with local decoder, it outperforms the state-of-the-art syntax-aware SRL systems on the CoNLL-2008, 2009 benchmarks for both English and Chinese. To our best knowledge, we report the first syntax-agnostic SRL model that surpasses all known syntax-aware models.