Abstract:Healthcare knowledge graphs (HKGs) have emerged as a promising tool for organizing medical knowledge in a structured and interpretable way, which provides a comprehensive view of medical concepts and their relationships. However, challenges such as data heterogeneity and limited coverage remain, emphasizing the need for further research in the field of HKGs. This survey paper serves as the first comprehensive overview of HKGs. We summarize the pipeline and key techniques for HKG construction (i.e., from scratch and through integration), as well as the common utilization approaches (i.e., model-free and model-based). To provide researchers with valuable resources, we organize existing HKGs (The resource is available at https://github.com/lujiaying/Awesome-HealthCare-KnowledgeBase) based on the data types they capture and application domains, supplemented with pertinent statistical information. In the application section, we delve into the transformative impact of HKGs across various healthcare domains, spanning from fine-grained basic science research to high-level clinical decision support. Lastly, we shed light on the opportunities for creating comprehensive and accurate HKGs in the era of large language models, presenting the potential to revolutionize healthcare delivery and enhance the interpretability and reliability of clinical prediction.
Abstract:Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-MIXUP, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency. The interpolation process in R-MIXUP leverages the log-Euclidean distance metrics from the Riemannian manifold, effectively addressing the swelling effect and arbitrarily incorrect label issues of vanilla Mixup. We demonstrate the effectiveness of R-MIXUP with five real-world biological network datasets on both regression and classification tasks. Besides, we derive a commonly ignored necessary condition for identifying the SPD matrices of biological networks and empirically study its influence on the model performance. The code implementation can be found in Appendix E.