Abstract:The visual pathway involves complex networks of cells and regions which contribute to the encoding and processing of visual information. While some aspects of visual perception are understood, there are still many unanswered questions regarding the exact mechanisms of visual encoding and the organization of visual information along the pathway. This chapter discusses the importance of visual perception and the challenges associated with understanding how visual information is encoded and represented in the brain. Furthermore, this chapter introduces the concept of neuroprostheses: devices designed to enhance or replace bodily functions, and highlights the importance of constructing computational models of the visual pathway in the implementation of such devices. A number of such models, employing the use of deep learning models, are outlined, and their value to understanding visual coding and natural vision is discussed.
Abstract:In digital cameras, we find a major limitation: the image and video form inherited from a film camera obstructs it from capturing the rapidly changing photonic world. Here, we present vidar, a bit sequence array where each bit represents whether the accumulation of photons has reached a threshold, to record and reconstruct the scene radiance at any moment. By employing only consumer-level CMOS sensors and integrated circuits, we have developed a vidar camera that is 1,000x faster than conventional cameras. By treating vidar as spike trains in biological vision, we have further developed a spiking neural network-based machine vision system that combines the speed of the machine and the mechanism of biological vision, achieving high-speed object detection and tracking 1,000x faster than human vision. We demonstrate the utility of the vidar camera and the super vision system in an assistant referee and target pointing system. Our study is expected to fundamentally revolutionize the image and video concepts and related industries, including photography, movies, and visual media, and to unseal a new spiking neural network-enabled speed-free machine vision era.
Abstract:Neural coding is one of the central questions in systems neuroscience for understanding how the brain processes stimulus from the environment, moreover, it is also a cornerstone for designing algorithms of brain-machine interface, where decoding incoming stimulus is needed for better performance of physical devices. Traditionally, the neural signal of interest for decoding visual scenes has been focused on fMRI data. However, our visual perception operates in a fast time scale of millisecond in terms of an event termed neural spike. So far there are few studies of decoding by using spikes. Here we fulfill this aim by developing a novel decoding framework based on deep neural networks, named spike-image decoder (SID), for reconstructing natural visual scenes, including static images and dynamic videos, from experimentally recorded spikes of a population of retinal ganglion cells. The SID is an end-to-end decoder with one end as neural spikes and the other end as images, which can be trained directly such that visual scenes are reconstructed from spikes in a highly accurate fashion. In addition, we show that SID can be generalized to arbitrary images by using image datasets of MNIST, CIFAR10, and CIFAR100. Furthermore, with a pre-trained SID, one can decode any dynamic videos, with the aid of an encoder, to achieve real-time encoding and decoding visual scenes by spikes. Altogether, our results shed new light on neuromorphic computing for artificial visual systems, such as event-based visual cameras and visual neuroprostheses.
Abstract:Recent studies have suggested that the cognitive process of the human brain is realized as probabilistic inference and can be further modeled by probabilistic graphical models like Markov random fields. Nevertheless, it remains unclear how probabilistic inference can be implemented by a network of spiking neurons in the brain. Previous studies tried to relate the inference equation of binary Markov random fields to the dynamic equation of spiking neural networks through belief propagation algorithm and reparameterization, but they are valid only for Markov random fields with limited network structure. In this paper, we propose a spiking neural network model that can implement inference of arbitrary binary Markov random fields. Specifically, we design a spiking recurrent neural network and prove that its neuronal dynamics are mathematically equivalent to the inference process of Markov random fields by adopting mean-field theory. Theoretical analysis and experimental results, together with the application
Abstract:Deep convolutional neural networks (CNNs) have demonstrated impressive performance on many visual tasks. Recently, they became useful models for the visual system in neuroscience. However, it is still not clear what are learned by CNNs in terms of neuronal circuits. When a deep CNN with many layers is used for the visual system, it is not easy to compare the structure components of CNN with possible neuroscience underpinnings due to highly complex circuits from the retina to higher visual cortex. Here we address this issue by focusing on single retinal ganglion cells with biophysical models and recording data from animals. By training CNNs with white noise images to predict neuronal responses, we found that fine structures of the retinal receptive field can be revealed. Specifically, convolutional filters learned are resembling biological components of the retinal circuit. This suggests that a CNN learning from one single retinal cell reveals a minimal neural network carried out in this cell. Furthermore, when CNNs learned from different cells are transferred between cells, there is a diversity of transfer learning performance, which indicates that CNNs are cell-specific. Moreover, when CNNs are transferred between different types of input images, here white noise v.s. natural images, transfer learning shows a good performance, which implies that CNN indeed captures the full computational ability of a single retinal cell for different inputs. Taken together, these results suggest that CNN could be used to reveal structure components of neuronal circuits, and provide a powerful model for neural system identification.
Abstract:Neuronal circuits formed in the brain are complex with intricate connection patterns. Such a complexity is also observed in the retina as a relatively simple neuronal circuit. A retinal ganglion cell receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required that can decipher these components in a systematic manner. Recently a method termed spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using the retinal ganglion cell as a model system, we show that STNMF can detect various biophysical properties of upstream bipolar cells, including spatial receptive fields, temporal filters, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell. Taken together,these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.