Abstract:Portrait stylization is a challenging task involving the transformation of an input portrait image into a specific style while preserving its inherent characteristics. The recent introduction of Stable Diffusion (SD) has significantly improved the quality of outcomes in this field. However, a practical stylization framework that can effectively filter harmful input content and preserve the distinct characteristics of an input, such as skin-tone, while maintaining the quality of stylization remains lacking. These challenges have hindered the wide deployment of such a framework. To address these issues, this study proposes a portrait stylization framework that incorporates a nudity content identification module (NCIM) and a skin-tone-aware portrait stylization module (STAPSM). In experiments, NCIM showed good performance in enhancing explicit content filtering, and STAPSM accurately represented a diverse range of skin tones. Our proposed framework has been successfully deployed in practice, and it has effectively satisfied critical requirements of real-world applications.
Abstract:Cartoonization is a task that renders natural photos into cartoon styles. Previous deep cartoonization methods only have focused on end-to-end translation, which may hinder editability. Instead, we propose a novel solution with editing features of texture and color based on the cartoon creation process. To do that, we design a model architecture to have separate decoders, texture and color, to decouple these attributes. In the texture decoder, we propose a texture controller, which enables a user to control stroke style and abstraction to generate diverse cartoon textures. We also introduce an HSV color augmentation to induce the networks to generate diverse and controllable color translation. To the best of our knowledge, our work is the first deep approach to control the cartoonization at inference while showing profound quality improvement over to baselines.
Abstract:Full-body portrait stylization, which aims to translate portrait photography into a cartoon style, has drawn attention recently. However, most methods have focused only on converting face regions, restraining the feasibility of use in real-world applications. A recently proposed two-stage method expands the rendering area to full bodies, but the outputs are less plausible and fail to achieve quality robustness of non-face regions. Furthermore, they cannot reflect diverse skin tones. In this study, we propose a data-centric solution to build a production-level full-body portrait stylization system. Based on the two-stage scheme, we construct a novel and advanced dataset preparation paradigm that can effectively resolve the aforementioned problems. Experiments reveal that with our pipeline, high-quality portrait stylization can be achieved without additional losses or architectural changes.
Abstract:Cartoon domain has recently gained increasing popularity. Previous studies have attempted quality portrait stylization into the cartoon domain; however, this poses a great challenge since they have not properly addressed the critical constraints, such as requiring a large number of training images or the lack of support for abstract cartoon faces. Recently, a layer swapping method has been used for stylization requiring only a limited number of training images; however, its use cases are still narrow as it inherits the remaining issues. In this paper, we propose a novel method called Cross-domain Style mixing, which combines two latent codes from two different domains. Our method effectively stylizes faces into multiple cartoon characters at various face abstraction levels using only a single generator without even using a large number of training images.