Abstract:While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-specific taxonomy of semantic tags, we collected 9,673 tracks from YouTube and added human annotations for 2,023 tracks by music experts, resulting in two subsets: PIAST-YT and PIAST-AT. Both include audio, text, tag annotations, and transcribed MIDI utilizing state-of-the-art piano transcription and beat tracking models. Among many possible tasks with the multi-modal dataset, we conduct music tagging and retrieval using both audio and MIDI data and report baseline performances to demonstrate its potential as a valuable resource for MIR research.
Abstract:While there are many music datasets with emotion labels in the literature, they cannot be used for research on symbolic-domain music analysis or generation, as there are usually audio files only. In this paper, we present the EMOPIA (pronounced `yee-m\`{o}-pi-uh') dataset, a shared multi-modal (audio and MIDI) database focusing on perceived emotion in pop piano music, to facilitate research on various tasks related to music emotion. The dataset contains 1,087 music clips from 387 songs and clip-level emotion labels annotated by four dedicated annotators. Since the clips are not restricted to one clip per song, they can also be used for song-level analysis. We present the methodology for building the dataset, covering the song list curation, clip selection, and emotion annotation processes. Moreover, we prototype use cases on clip-level music emotion classification and emotion-based symbolic music generation by training and evaluating corresponding models using the dataset. The result demonstrates the potential of EMOPIA for being used in future exploration on piano emotion-related MIR tasks.
Abstract:The goal of this paper to generate a visually appealing video that responds to music with a neural network so that each frame of the video reflects the musical characteristics of the corresponding audio clip. To achieve the goal, we propose a neural music visualizer directly mapping deep music embeddings to style embeddings of StyleGAN, named Tr\"aumerAI, which consists of a music auto-tagging model using short-chunk CNN and StyleGAN2 pre-trained on WikiArt dataset. Rather than establishing an objective metric between musical and visual semantics, we manually labeled the pairs in a subjective manner. An annotator listened to 100 music clips of 10 seconds long and selected an image that suits the music among the 200 StyleGAN-generated examples. Based on the collected data, we trained a simple transfer function that converts an audio embedding to a style embedding. The generated examples show that the mapping between audio and video makes a certain level of intra-segment similarity and inter-segment dissimilarity.
Abstract:Word embedding pioneered by Mikolov et al. is a staple technique for word representations in natural language processing (NLP) research which has also found popularity in music information retrieval tasks. Depending on the type of text data for word embedding, however, vocabulary size and the degree of musical pertinence can significantly vary. In this work, we (1) train the distributed representation of words using combinations of both general text data and music-specific data and (2) evaluate the system in terms of how they associate listening contexts with musical compositions.