Abstract:The widely studied task of Natural Language Inference (NLI) requires a system to recognize whether one piece of text is textually entailed by another, i.e. whether the entirety of its meaning can be inferred from the other. In current NLI datasets and models, textual entailment relations are typically defined on the sentence- or paragraph-level. However, even a simple sentence often contains multiple propositions, i.e. distinct units of meaning conveyed by the sentence. As these propositions can carry different truth values in the context of a given premise, we argue for the need to recognize the textual entailment relation of each proposition in a sentence individually. We propose PropSegmEnt, a corpus of over 35K propositions annotated by expert human raters. Our dataset structure resembles the tasks of (1) segmenting sentences within a document to the set of propositions, and (2) classifying the entailment relation of each proposition with respect to a different yet topically-aligned document, i.e. documents describing the same event or entity. We establish strong baselines for the segmentation and entailment tasks. Through case studies on summary hallucination detection and document-level NLI, we demonstrate that our conceptual framework is potentially useful for understanding and explaining the compositionality of NLI labels.
Abstract:Natural Language Inference (NLI) has been extensively studied by the NLP community as a framework for estimating the semantic relation between sentence pairs. While early work identified certain biases in NLI models, recent advancements in modeling and datasets demonstrated promising performance. In this work, we further explore the direct zero-shot applicability of NLI models to real applications, beyond the sentence-pair setting they were trained on. First, we analyze the robustness of these models to longer and out-of-domain inputs. Then, we develop new aggregation methods to allow operating over full documents, reaching state-of-the-art performance on the ContractNLI dataset. Interestingly, we find NLI scores to provide strong retrieval signals, leading to more relevant evidence extractions compared to common similarity-based methods. Finally, we go further and investigate whole document clusters to identify both discrepancies and consensus among sources. In a test case, we find real inconsistencies between Wikipedia pages in different languages about the same topic.
Abstract:We present BusTr, a machine-learned model for translating road traffic forecasts into predictions of bus delays, used by Google Maps to serve the majority of the world's public transit systems where no official real-time bus tracking is provided. We demonstrate that our neural sequence model improves over DeepTTE, the state-of-the-art baseline, both in performance (-30% MAPE) and training stability. We also demonstrate significant generalization gains over simpler models, evaluated on longitudinal data to cope with a constantly evolving world.