Abstract:Predicting emotions elicited by news headlines can be challenging as the task is largely influenced by the varying nature of people's interpretations and backgrounds. Previous works have explored classifying discrete emotions directly from news headlines. We provide a different approach to tackling this problem by utilizing people's explanations of their emotion, written in free-text, on how they feel after reading a news headline. Using the dataset BU-NEmo+ (Gao et al., 2022), we found that for emotion classification, the free-text explanations have a strong correlation with the dominant emotion elicited by the headlines. The free-text explanations also contain more sentimental context than the news headlines alone and can serve as a better input to emotion classification models. Therefore, in this work we explored generating emotion explanations from headlines by training a sequence-to-sequence transformer model and by using pretrained large language model, ChatGPT (GPT-4). We then used the generated emotion explanations for emotion classification. In addition, we also experimented with training the pretrained T5 model for the intermediate task of explanation generation before fine-tuning it for emotion classification. Using McNemar's significance test, methods that incorporate GPT-generated free-text emotion explanations demonstrated significant improvement (P-value < 0.05) in emotion classification from headlines, compared to methods that only use headlines. This underscores the value of using intermediate free-text explanations for emotion prediction tasks with headlines.
Abstract:Large language models trained on a mixture of NLP tasks that are converted into a text-to-text format using prompts, can generalize into novel forms of language and handle novel tasks. A large body of work within prompt engineering attempts to understand the effects of input forms and prompts in achieving superior performance. We consider an alternative measure and inquire whether the way in which an input is encoded affects social biases promoted in outputs. In this paper, we study T0, a large-scale multi-task text-to-text language model trained using prompt-based learning. We consider two different forms of semantically equivalent inputs: question-answer format and premise-hypothesis format. We use an existing bias benchmark for the former BBQ and create the first bias benchmark in natural language inference BBNLI with hand-written hypotheses while also converting each benchmark into the other form. The results on two benchmarks suggest that given two different formulations of essentially the same input, T0 conspicuously acts more biased in question answering form, which is seen during training, compared to premise-hypothesis form which is unlike its training examples. Code and data are released under https://github.com/feyzaakyurek/bbnli.
Abstract:Researchers have devised numerous ways to quantify social biases vested in pretrained language models. As some language models are capable of generating coherent completions given a set of textual prompts, several prompting datasets have been proposed to measure biases between social groups -- posing language generation as a way of identifying biases. In this opinion paper, we analyze how specific choices of prompt sets, metrics, automatic tools and sampling strategies affect bias results. We find out that the practice of measuring biases through text completion is prone to yielding contradicting results under different experiment settings. We additionally provide recommendations for reporting biases in open-ended language generation for a more complete outlook of biases exhibited by a given language model. Code to reproduce the results is released under https://github.com/feyzaakyurek/bias-textgen.