Abstract:The rising need for explainable deep neural network architectures has utilized semantic concepts as explainable units. Several approaches utilizing disentangled representation learning estimate the generative factors and utilize them as concepts for explaining DNNs. However, even though the generative factors for a dataset remain fixed, concepts are not fixed entities and vary based on downstream tasks. In this paper, we propose a disentanglement mechanism utilizing a variational autoencoder (VAE) for learning mutually independent generative factors for a given dataset and subsequently learning task-specific concepts using a structural causal model (SCM). Our method assumes generative factors and concepts to form a bipartite graph, with directed causal edges from generative factors to concepts. Experiments are conducted on datasets with known generative factors: D-sprites and Shapes3D. On specific downstream tasks, our proposed method successfully learns task-specific concepts which are explained well by the causal edges from the generative factors. Lastly, separate from current causal concept discovery methods, our methodology is generalizable to an arbitrary number of concepts and flexible to any downstream tasks.
Abstract:Generalized additive models (GAMs) have long been a powerful white-box tool for the intelligible analysis of tabular data, revealing the influence of each feature on the model predictions. Despite the success of neural networks (NNs) in various domains, their application as NN-based GAMs in tabular data analysis remains suboptimal compared to tree-based ones, and the opacity of encoders in NN-GAMs also prevents users from understanding how networks learn the functions. In this work, we propose a new deep tabular learning method, termed Prototypical Neural Additive Model (ProtoNAM), which introduces prototypes into neural networks in the framework of GAMs. With the introduced prototype-based feature activation, ProtoNAM can flexibly model the irregular mapping from tabular features to the outputs while maintaining the explainability of the final prediction. We also propose a gradient-boosting inspired hierarchical shape function modeling method, facilitating the discovery of complex feature patterns and bringing transparency into the learning process of each network layer. Our empirical evaluations demonstrate that ProtoNAM outperforms all existing NN-based GAMs, while providing additional insights into the shape function learned for each feature. The source code of ProtoNAM is available at \url{https://github.com/Teddy-XiongGZ/ProtoNAM}.
Abstract:Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts. A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process. While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts as an explanation for downstream tasks. In this paper, we propose a novel method CoLiDR - which utilizes a disentangled representation learning setup for learning mutually independent generative factors and subsequently learns to aggregate the said representations into human-understandable concepts using a novel aggregation/decomposition module. Experiments are conducted on datasets with both known and unknown latent generative factors. Our method successfully aggregates disentangled generative factors into concepts while maintaining parity with state-of-the-art concept-based approaches. Quantitative and visual analysis of the learned aggregation procedure demonstrates the advantages of our work compared to commonly used concept-based models over four challenging datasets. Lastly, our work is generalizable to an arbitrary number of concepts and generative factors - making it flexible enough to be suitable for various types of data.
Abstract:Adapting large language models (LLMs) to unseen tasks with in-context training samples without fine-tuning remains an important research problem. To learn a robust LLM that adapts well to unseen tasks, multiple meta-training approaches have been proposed such as MetaICL and MetaICT, which involve meta-training pre-trained LLMs on a wide variety of diverse tasks. These meta-training approaches essentially perform in-context multi-task fine-tuning and evaluate on a disjointed test set of tasks. Even though they achieve impressive performance, their goal is never to compute a truly general set of parameters. In this paper, we propose MAML-en-LLM, a novel method for meta-training LLMs, which can learn truly generalizable parameters that not only perform well on disjointed tasks but also adapts to unseen tasks. We see an average increase of 2% on unseen domains in the performance while a massive 4% improvement on adaptation performance. Furthermore, we demonstrate that MAML-en-LLM outperforms baselines in settings with limited amount of training data on both seen and unseen domains by an average of 2%. Finally, we discuss the effects of type of tasks, optimizers and task complexity, an avenue barely explored in meta-training literature. Exhaustive experiments across 7 task settings along with two data settings demonstrate that models trained with MAML-en-LLM outperform SOTA meta-training approaches.
Abstract:With the wide proliferation of Deep Neural Networks in high-stake applications, there is a growing demand for explainability behind their decision-making process. Concept learning models attempt to learn high-level 'concepts' - abstract entities that align with human understanding, and thus provide interpretability to DNN architectures. However, in this paper, we demonstrate that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity wherein the models fail to learn consistent concepts among similar classes and limited concept interoperability wherein the models fail to generalize learned concepts to new domains for the same task. Keeping these in mind, we propose a novel self-explaining architecture for concept learning across domains which - i) incorporates a new concept saliency network for representative concept selection, ii) utilizes contrastive learning to capture representative domain invariant concepts, and iii) uses a novel prototype-based concept grounding regularization to improve concept alignment across domains. We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets. Empirical results show that our method improves both concept fidelity measured through concept overlap and concept interoperability measured through domain adaptation performance.
Abstract:Speech representations learned in a self-supervised fashion from massive unlabeled speech corpora have been adapted successfully toward several downstream tasks. However, such representations may be skewed toward canonical data characteristics of such corpora and perform poorly on atypical, non-native accented speaker populations. With the state-of-the-art HuBERT model as a baseline, we propose and investigate self-supervised adaptation of speech representations to such populations in a parameter-efficient way via training accent-specific residual adapters. We experiment with 4 accents and choose automatic speech recognition (ASR) as the downstream task of interest. We obtain strong word error rate reductions (WERR) over HuBERT-large for all 4 accents, with a mean WERR of 22.7% with accent-specific adapters and a mean WERR of 25.1% if the entire encoder is accent-adapted. While our experiments utilize HuBERT and ASR as the downstream task, our proposed approach is both model and task-agnostic.
Abstract:Deep neural networks are susceptible to human imperceptible adversarial perturbations. One of the strongest defense mechanisms is \emph{Adversarial Training} (AT). In this paper, we aim to address two predominant problems in AT. First, there is still little consensus on how to set hyperparameters with a performance guarantee for AT research, and customized settings impede a fair comparison between different model designs in AT research. Second, the robustly trained neural networks struggle to generalize well and suffer from tremendous overfitting. This paper focuses on the primary AT framework - Projected Gradient Descent Adversarial Training (PGD-AT). We approximate the dynamic of PGD-AT by a continuous-time Stochastic Differential Equation (SDE), and show that the diffusion term of this SDE determines the robust generalization. An immediate implication of this theoretical finding is that robust generalization is positively correlated with the ratio between learning rate and batch size. We further propose a novel approach, \emph{Diffusion Enhanced Adversarial Training} (DEAT), to manipulate the diffusion term to improve robust generalization with virtually no extra computational burden. We theoretically show that DEAT obtains a tighter generalization bound than PGD-AT. Our empirical investigation is extensive and firmly attests that DEAT universally outperforms PGD-AT by a significant margin.
Abstract:Rising usage of deep neural networks to perform decision making in critical applications like medical diagnosis and financial analysis have raised concerns regarding their reliability and trustworthiness. As automated systems become more mainstream, it is important their decisions be transparent, reliable and understandable by humans for better trust and confidence. To this effect, concept-based models such as Concept Bottleneck Models (CBMs) and Self-Explaining Neural Networks (SENN) have been proposed which constrain the latent space of a model to represent high level concepts easily understood by domain experts in the field. Although concept-based models promise a good approach to both increasing explainability and reliability, it is yet to be shown if they demonstrate robustness and output consistent concepts under systematic perturbations to their inputs. To better understand performance of concept-based models on curated malicious samples, in this paper, we aim to study their robustness to adversarial perturbations, which are also known as the imperceptible changes to the input data that are crafted by an attacker to fool a well-learned concept-based model. Specifically, we first propose and analyze different malicious attacks to evaluate the security vulnerability of concept based models. Subsequently, we propose a potential general adversarial training-based defense mechanism to increase robustness of these systems to the proposed malicious attacks. Extensive experiments on one synthetic and two real-world datasets demonstrate the effectiveness of the proposed attacks and the defense approach.
Abstract:Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-stake areas like medicine or finance. Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text. Via a small portion of word-level swaps, these adversarial perturbations aim to make the resulting text semantically and spatially similar to its seed input (therefore sharing similar interpretations). Simultaneously, the generated examples achieve the same prediction label as the seed yet are given a substantially different explanation by the interpretation methods. Our experiments generate fragile interpretations to attack two SOTA interpretation methods, across three popular Transformer models and on two different NLP datasets. We observe that the rank order correlation drops by over 20% when less than 10% of words are perturbed on average. Further, rank-order correlation keeps decreasing as more words get perturbed. Furthermore, we demonstrate that candidates generated from our method have good quality metrics.