Abstract:In this paper, we delve into the advancement of domain-specific Large Language Models (LLMs) with a focus on their application in software development. We introduce DevAssistLlama, a model developed through instruction tuning, to assist developers in processing software-related natural language queries. This model, a variant of instruction tuned LLM, is particularly adept at handling intricate technical documentation, enhancing developer capability in software specific tasks. The creation of DevAssistLlama involved constructing an extensive instruction dataset from various software systems, enabling effective handling of Named Entity Recognition (NER), Relation Extraction (RE), and Link Prediction (LP). Our results demonstrate DevAssistLlama's superior capabilities in these tasks, in comparison with other models including ChatGPT. This research not only highlights the potential of specialized LLMs in software development also the pioneer LLM for this domain.
Abstract:We consider the task of generating designs directly from natural language descriptions, and consider floor plan generation as the initial research area. Language conditional generative models have recently been very successful in generating high-quality artistic images. However, designs must satisfy different constraints that are not present in generating artistic images, particularly spatial and relational constraints. We make multiple contributions to initiate research on this task. First, we introduce a novel dataset, \textit{Tell2Design} (T2D), which contains more than $80k$ floor plan designs associated with natural language instructions. Second, we propose a Sequence-to-Sequence model that can serve as a strong baseline for future research. Third, we benchmark this task with several text-conditional image generation models. We conclude by conducting human evaluations on the generated samples and providing an analysis of human performance. We hope our contributions will propel the research on language-guided design generation forward.