Abstract:In this paper, we firstly tackle a more realistic Domain Adaptation (DA) setting: Source-Free Blending-Target Domain Adaptation (SF-BTDA), where we can not access to source domain data while facing mixed multiple target domains without any domain labels in prior. Compared to existing DA scenarios, SF-BTDA generally faces the co-existence of different label shifts in different targets, along with noisy target pseudo labels generated from the source model. In this paper, we propose a new method called Evidential Contrastive Alignment (ECA) to decouple the blending target domain and alleviate the effect from noisy target pseudo labels. First, to improve the quality of pseudo target labels, we propose a calibrated evidential learning module to iteratively improve both the accuracy and certainty of the resulting model and adaptively generate high-quality pseudo target labels. Second, we design a graph contrastive learning with the domain distance matrix and confidence-uncertainty criterion, to minimize the distribution gap of samples of a same class in the blended target domains, which alleviates the co-existence of different label shifts in blended targets. We conduct a new benchmark based on three standard DA datasets and ECA outperforms other methods with considerable gains and achieves comparable results compared with those that have domain labels or source data in prior.
Abstract:For real-world applications, neural network models are commonly deployed in dynamic environments, where the distribution of the target domain undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to test data drawn from a continually changing target domain. Despite recent advancements in addressing CTTA, two critical issues remain: 1) The use of a fixed threshold for pseudo-labeling in existing methodologies leads to the generation of low-quality pseudo-labels, as model confidence varies across categories and domains; 2) While current solutions utilize stochastic parameter restoration to mitigate catastrophic forgetting, their capacity to preserve critical information is undermined by its intrinsic randomness. To tackle these challenges, we present CTAOD, aiming to enhance the performance of detection models in CTTA scenarios. Inspired by prior CTTA works for effective adaptation, CTAOD is founded on the mean-teacher framework, characterized by three core components. Firstly, the object-level contrastive learning module tailored for object detection extracts object-level features using the teacher's region of interest features and optimizes them through contrastive learning. Secondly, the dynamic threshold strategy updates the category-specific threshold based on predicted confidence scores to improve the quality of pseudo-labels. Lastly, we design a data-driven stochastic restoration mechanism to selectively reset inactive parameters using the gradients as weights for a random mask matrix, thereby ensuring the retention of essential knowledge. We demonstrate the effectiveness of our approach on four CTTA tasks for object detection, where CTAOD outperforms existing methods, especially achieving a 3.0 mAP improvement on the Cityscapes-to-Cityscapes-C CTTA task.
Abstract:Vast amounts of remote sensing (RS) data provide Earth observations across multiple dimensions, encompassing critical spatial, temporal, and spectral information which is essential for addressing global-scale challenges such as land use monitoring, disaster prevention, and environmental change mitigation. Despite various pre-training methods tailored to the characteristics of RS data, a key limitation persists: the inability to effectively integrate spatial, temporal, and spectral information within a single unified model. To unlock the potential of RS data, we construct a Spatial-Temporal-Spectral Structured Dataset (STSSD) characterized by the incorporation of multiple RS sources, diverse coverage, unified locations within image sets, and heterogeneity within images. Building upon this structured dataset, we propose an Anchor-Aware Masked AutoEncoder method (A$^{2}$-MAE), leveraging intrinsic complementary information from the different kinds of images and geo-information to reconstruct the masked patches during the pre-training phase. A$^{2}$-MAE integrates an anchor-aware masking strategy and a geographic encoding module to comprehensively exploit the properties of RS images. Specifically, the proposed anchor-aware masking strategy dynamically adapts the masking process based on the meta-information of a pre-selected anchor image, thereby facilitating the training on images captured by diverse types of RS sources within one model. Furthermore, we propose a geographic encoding method to leverage accurate spatial patterns, enhancing the model generalization capabilities for downstream applications that are generally location-related. Extensive experiments demonstrate our method achieves comprehensive improvements across various downstream tasks compared with existing RS pre-training methods, including image classification, semantic segmentation, and change detection tasks.
Abstract:Land cover information is indispensable for advancing the United Nations' sustainable development goals, and land cover mapping under a more detailed category system would significantly contribute to economic livelihood tracking and environmental degradation measurement. However, the substantial difficulty in acquiring fine-grained training data makes the implementation of this task particularly challenging. Here, we propose to combine fully labeled source domain and weakly labeled target domain for weakly supervised domain adaptation (WSDA). This is beneficial as the utilization of sparse and coarse weak labels can considerably alleviate the labor required for precise and detailed land cover annotation. Specifically, we introduce the Prototype-based pseudo-label Rectification and Expansion (PRE) approach, which leverages the prototypes (i.e., the class-wise feature centroids) as the bridge to connect sparse labels and global feature distributions. According to the feature distances to the prototypes, the confidence of pseudo-labels predicted in the unlabeled regions of the target domain is assessed. This confidence is then utilized to guide the dynamic expansion and rectification of pseudo-labels. Based on PRE, we carry out high categorical resolution land cover mapping for 10 cities in different regions around the world, severally using PlanetScope, Gaofen-1, and Sentinel-2 satellite images. In the study areas, we achieve cross-sensor, cross-category, and cross-continent WSDA, with the overall accuracy exceeding 80%. The promising results indicate that PRE is capable of reducing the dependency of land cover classification on high-quality annotations, thereby improving label efficiency. We expect our work to enable global fine-grained land cover mapping, which in turn promote Earth observation to provide more precise and thorough information for environmental monitoring.
Abstract:Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions. Despite advances in remote sensing data for urban monitoring, coarse-grained classification systems and the lack of continuous temporal observations hinder the application of deep learning to urban change analysis. To address this, we introduce FUSU, a multi-source, multi-temporal change segmentation dataset for fine-grained urban semantic understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 20-50 cm ground sample distance and monthly optical and radar satellite time series, covering 847 km2 across five urban areas in China. The fine-grained pixel-wise annotations and high spatial-temporal resolution data provide a robust foundation for deep learning models to understand urbanization and land use changes. To fully leverage FUSU, we propose a unified time-series architecture for both change detection and segmentation and benchmark FUSU on various methods for several tasks. Dataset and code will be available at: https://github.com/yuanshuai0914/FUSU.
Abstract:Operational weather forecasting models have advanced for decades on both the explicit numerical solvers and the empirical physical parameterization schemes. However, the involved high computational costs and uncertainties in these existing schemes are requiring potential improvements through alternative machine learning methods. Previous works use a unified model to learn the dynamics and physics of the atmospheric model. Contrarily, we propose a simple yet effective machine learning model that learns the horizontal movement in the dynamical core and vertical movement in the physical parameterization separately. By replacing the advection with a graph attention network and the convection with a multi-layer perceptron, our model provides a new and efficient perspective to simulate the transition of variables in atmospheric models. We also assess the model's performance over a 5-day iterative forecasting. Under the same input variables and training methods, our model outperforms existing data-driven methods with a significantly-reduced number of parameters with a resolution of 5.625 deg. Overall, this work aims to contribute to the ongoing efforts that leverage machine learning techniques for improving both the accuracy and efficiency of global weather forecasting.
Abstract:Reference-based super-resolution (RefSR) has the potential to build bridges across spatial and temporal resolutions of remote sensing images. However, existing RefSR methods are limited by the faithfulness of content reconstruction and the effectiveness of texture transfer in large scaling factors. Conditional diffusion models have opened up new opportunities for generating realistic high-resolution images, but effectively utilizing reference images within these models remains an area for further exploration. Furthermore, content fidelity is difficult to guarantee in areas without relevant reference information. To solve these issues, we propose a change-aware diffusion model named Ref-Diff for RefSR, using the land cover change priors to guide the denoising process explicitly. Specifically, we inject the priors into the denoising model to improve the utilization of reference information in unchanged areas and regulate the reconstruction of semantically relevant content in changed areas. With this powerful guidance, we decouple the semantics-guided denoising and reference texture-guided denoising processes to improve the model performance. Extensive experiments demonstrate the superior effectiveness and robustness of the proposed method compared with state-of-the-art RefSR methods in both quantitative and qualitative evaluations. The code and data are available at https://github.com/dongrunmin/RefDiff.
Abstract:Nighttime light (NTL) remote sensing observation serves as a unique proxy for quantitatively assessing progress toward meeting a series of Sustainable Development Goals (SDGs), such as poverty estimation, urban sustainable development, and carbon emission. However, existing NTL observations often suffer from pervasive degradation and inconsistency, limiting their utility for computing the indicators defined by the SDGs. In this study, we propose a novel approach to reconstruct high-resolution NTL images using multi-modal remote sensing data. To support this research endeavor, we introduce DeepLightMD, a comprehensive dataset comprising data from five heterogeneous sensors, offering fine spatial resolution and rich spectral information at a national scale. Additionally, we present DeepLightSR, a calibration-aware method for building bridges between spatially heterogeneous modality data in the multi-modality super-resolution. DeepLightSR integrates calibration-aware alignment, an auxiliary-to-main multi-modality fusion, and an auxiliary-embedded refinement to effectively address spatial heterogeneity, fuse diversely representative features, and enhance performance in $8\times$ super-resolution (SR) tasks. Extensive experiments demonstrate the superiority of DeepLightSR over 8 competing methods, as evidenced by improvements in PSNR (2.01 dB $ \sim $ 13.25 dB) and PIQE (0.49 $ \sim $ 9.32). Our findings underscore the practical significance of our proposed dataset and model in reconstructing high-resolution NTL data, supporting efficiently and quantitatively assessing the SDG progress.
Abstract:Providing an accurate evaluation of palm tree plantation in a large region can bring meaningful impacts in both economic and ecological aspects. However, the enormous spatial scale and the variety of geological features across regions has made it a grand challenge with limited solutions based on manual human monitoring efforts. Although deep learning based algorithms have demonstrated potential in forming an automated approach in recent years, the labelling efforts needed for covering different features in different regions largely constrain its effectiveness in large-scale problems. In this paper, we propose a novel domain adaptive oil palm tree detection method, i.e., a Multi-level Attention Domain Adaptation Network (MADAN) to reap cross-regional oil palm tree counting and detection. MADAN consists of 4 procedures: First, we adopted a batch-instance normalization network (BIN) based feature extractor for improving the generalization ability of the model, integrating batch normalization and instance normalization. Second, we embedded a multi-level attention mechanism (MLA) into our architecture for enhancing the transferability, including a feature level attention and an entropy level attention. Then we designed a minimum entropy regularization (MER) to increase the confidence of the classifier predictions through assigning the entropy level attention value to the entropy penalty. Finally, we employed a sliding window-based prediction and an IOU based post-processing approach to attain the final detection results. We conducted comprehensive ablation experiments using three different satellite images of large-scale oil palm plantation area with six transfer tasks. MADAN improves the detection accuracy by 14.98% in terms of average F1-score compared with the Baseline method (without DA), and performs 3.55%-14.49% better than existing domain adaptation methods.