Abstract:Sparsifying deep neural networks to reduce their inference cost is an NP-hard problem and difficult to optimize due to its mixed discrete and continuous nature. Yet, as we prove, continuous sparsification has already an implicit bias towards sparsity that would not require common projections of relaxed mask variables. While implicit rather than explicit regularization induces benefits, it usually does not provide enough flexibility in practice, as only a specific target sparsity is obtainable. To exploit its potential for continuous sparsification, we propose a way to control the strength of the implicit bias. Based on the mirror flow framework, we derive resulting convergence and optimality guarantees in the context of underdetermined linear regression and demonstrate the utility of our insights in more general neural network sparsification experiments, achieving significant performance gains, particularly in the high-sparsity regime. Our theoretical contribution might be of independent interest, as we highlight a way to enter the rich regime and show that implicit bias is controllable by a time-dependent Bregman potential.
Abstract:The success of iterative pruning methods in achieving state-of-the-art sparse networks has largely been attributed to improved mask identification and an implicit regularization induced by pruning. We challenge this hypothesis and instead posit that their repeated cyclic training schedules enable improved optimization. To verify this, we show that pruning at initialization is significantly boosted by repeated cyclic training, even outperforming standard iterative pruning methods. The dominant mechanism how this is achieved, as we conjecture, can be attributed to a better exploration of the loss landscape leading to a lower training loss. However, at high sparsity, repeated cyclic training alone is not enough for competitive performance. A strong coupling between learnt parameter initialization and mask seems to be required. Standard methods obtain this coupling via expensive pruning-training iterations, starting from a dense network. To achieve this with sparse training instead, we propose SCULPT-ing, i.e., repeated cyclic training of any sparse mask followed by a single pruning step to couple the parameters and the mask, which is able to match the performance of state-of-the-art iterative pruning methods in the high sparsity regime at reduced computational cost.
Abstract:Graph Attention Networks (GATs) are designed to provide flexible neighborhood aggregation that assigns weights to neighbors according to their importance. In practice, however, GATs are often unable to switch off task-irrelevant neighborhood aggregation, as we show experimentally and analytically. To address this challenge, we propose GATE, a GAT extension that holds three major advantages: i) It alleviates over-smoothing by addressing its root cause of unnecessary neighborhood aggregation. ii) Similarly to perceptrons, it benefits from higher depth as it can still utilize additional layers for (non-)linear feature transformations in case of (nearly) switched-off neighborhood aggregation. iii) By down-weighting connections to unrelated neighbors, it often outperforms GATs on real-world heterophilic datasets. To further validate our claims, we construct a synthetic test bed to analyze a model's ability to utilize the appropriate amount of neighborhood aggregation, which could be of independent interest.
Abstract:Paired single-cell sequencing technologies enable the simultaneous measurement of complementary modalities of molecular data at single-cell resolution. Along with the advances in these technologies, many methods based on variational autoencoders have been developed to integrate these data. However, these methods do not explicitly incorporate prior biological relationships between the data modalities, which could significantly enhance modeling and interpretation. We propose a novel probabilistic learning framework that explicitly incorporates conditional independence relationships between multi-modal data as a directed acyclic graph using a generalized hierarchical variational autoencoder. We demonstrate the versatility of our framework across various applications pertinent to single-cell multi-omics data integration. These include the isolation of common and distinct information from different modalities, modality-specific differential analysis, and integrated cell clustering. We anticipate that the proposed framework can facilitate the construction of highly flexible graphical models that can capture the complexities of biological hypotheses and unravel the connections between different biological data types, such as different modalities of paired single-cell multi-omics data. The implementation of the proposed framework can be found in the repository https://github.com/kuijjerlab/CAVACHON.
Abstract:Message Passing Graph Neural Networks are known to suffer from two problems that are sometimes believed to be diametrically opposed: over-squashing and over-smoothing. The former results from topological bottlenecks that hamper the information flow from distant nodes and are mitigated by spectral gap maximization, primarily, by means of edge additions. However, such additions often promote over-smoothing that renders nodes of different classes less distinguishable. Inspired by the Braess phenomenon, we argue that deleting edges can address over-squashing and over-smoothing simultaneously. This insight explains how edge deletions can improve generalization, thus connecting spectral gap optimization to a seemingly disconnected objective of reducing computational resources by pruning graphs for lottery tickets. To this end, we propose a more effective spectral gap optimization framework to add or delete edges and demonstrate its effectiveness on large heterophilic datasets.
Abstract:Neural structure learning is of paramount importance for scientific discovery and interpretability. Yet, contemporary pruning algorithms that focus on computational resource efficiency face algorithmic barriers to select a meaningful model that aligns with domain expertise. To mitigate this challenge, we propose DASH, which guides pruning by available domain-specific structural information. In the context of learning dynamic gene regulatory network models, we show that DASH combined with existing general knowledge on interaction partners provides data-specific insights aligned with biology. For this task, we show on synthetic data with ground truth information and two real world applications the effectiveness of DASH, which outperforms competing methods by a large margin and provides more meaningful biological insights. Our work shows that domain specific structural information bears the potential to improve model-derived scientific insights.
Abstract:Learning Rate Rewinding (LRR) has been established as a strong variant of Iterative Magnitude Pruning (IMP) to find lottery tickets in deep overparameterized neural networks. While both iterative pruning schemes couple structure and parameter learning, understanding how LRR excels in both aspects can bring us closer to the design of more flexible deep learning algorithms that can optimize diverse sets of sparse architectures. To this end, we conduct experiments that disentangle the effect of mask learning and parameter optimization and how both benefit from overparameterization. The ability of LRR to flip parameter signs early and stay robust to sign perturbations seems to make it not only more effective in mask identification but also in optimizing diverse sets of masks, including random ones. In support of this hypothesis, we prove in a simplified single hidden neuron setting that LRR succeeds in more cases than IMP, as it can escape initially problematic sign configurations.
Abstract:While the expressive power and computational capabilities of graph neural networks (GNNs) have been theoretically studied, their optimization and learning dynamics, in general, remain largely unexplored. Our study undertakes the Graph Attention Network (GAT), a popular GNN architecture in which a node's neighborhood aggregation is weighted by parameterized attention coefficients. We derive a conservation law of GAT gradient flow dynamics, which explains why a high portion of parameters in GATs with standard initialization struggle to change during training. This effect is amplified in deeper GATs, which perform significantly worse than their shallow counterparts. To alleviate this problem, we devise an initialization scheme that balances the GAT network. Our approach i) allows more effective propagation of gradients and in turn enables trainability of deeper networks, and ii) attains a considerable speedup in training and convergence time in comparison to the standard initialization. Our main theorem serves as a stepping stone to studying the learning dynamics of positive homogeneous models with attention mechanisms.
Abstract:Low-dimensional embeddings and visualizations are an indispensable tool for analysis of high-dimensional data. State-of-the-art methods, such as tSNE and UMAP, excel in unveiling local structures hidden in high-dimensional data and are therefore routinely applied in standard analysis pipelines in biology. We show, however, that these methods fail to reconstruct local properties, such as relative differences in densities (Fig. 1) and that apparent differences in cluster size can arise from computational artifact caused by differing sample sizes (Fig. 2). Providing a theoretical analysis of this issue, we then suggest dtSNE, which approximately conserves local densities. In an extensive study on synthetic benchmark and real world data comparing against five state-of-the-art methods, we empirically show that dtSNE provides similar global reconstruction, but yields much more accurate depictions of local distances and relative densities.
Abstract:Random masks define surprisingly effective sparse neural network models, as has been shown empirically. The resulting Erd\"os-R\'enyi (ER) random graphs can often compete with dense architectures and state-of-the-art lottery ticket pruning algorithms struggle to outperform them, even though the random baselines do not rely on computationally expensive pruning-training iterations but can be drawn initially without significant computational overhead. We offer a theoretical explanation of how such ER masks can approximate arbitrary target networks if they are wider by a logarithmic factor in the inverse sparsity $1 / \log(1/\text{sparsity})$. While we are the first to show theoretically and experimentally that random ER source networks contain strong lottery tickets, we also prove the existence of weak lottery tickets that require a lower degree of overparametrization than strong lottery tickets. These unusual results are based on the observation that ER masks are well trainable in practice, which we verify in experiments with varied choices of random masks. Some of these data-free choices outperform previously proposed random approaches on standard image classification benchmark datasets.