Abstract:Tabular datasets are ubiquitous in data science applications. Given their importance, it seems natural to apply state-of-the-art deep learning algorithms in order to fully unlock their potential. Here we propose neural network models that represent tabular time series that can optionally leverage their hierarchical structure. This results in two architectures for tabular time series: one for learning representations that is analogous to BERT and can be pre-trained end-to-end and used in downstream tasks, and one that is akin to GPT and can be used for generation of realistic synthetic tabular sequences. We demonstrate our models on two datasets: a synthetic credit card transaction dataset, where the learned representations are used for fraud detection and synthetic data generation, and on a real pollution dataset, where the learned encodings are used to predict atmospheric pollutant concentrations. Code and data are available at https://github.com/IBM/TabFormer.
Abstract:The accuracy and reliability of machine learning algorithms are an important concern for suppliers of artificial intelligence (AI) services, but considerations beyond accuracy, such as safety, security, and provenance, are also critical elements to engender consumers' trust in a service. In this paper, we propose a supplier's declaration of conformity (SDoC) for AI services to help increase trust in AI services. An SDoC is a transparent, standardized, but often not legally required, document used in many industries and sectors to describe the lineage of a product along with the safety and performance testing it has undergone. We envision an SDoC for AI services to contain purpose, performance, safety, security, and provenance information to be completed and voluntarily released by AI service providers for examination by consumers. Importantly, it conveys product-level rather than component-level functional testing. We suggest a set of declaration items tailored to AI and provide examples for two fictitious AI services.