Abstract:Language models (LMs) are pretrained to imitate internet text, including content that would violate human preferences if generated by an LM: falsehoods, offensive comments, personally identifiable information, low-quality or buggy code, and more. Here, we explore alternative objectives for pretraining LMs in a way that also guides them to generate text aligned with human preferences. We benchmark five objectives for pretraining with human feedback across three tasks and study how they affect the trade-off between alignment and capabilities of pretrained LMs. We find a Pareto-optimal and simple approach among those we explored: conditional training, or learning distribution over tokens conditional on their human preference scores given by a reward model. Conditional training reduces the rate of undesirable content by up to an order of magnitude, both when generating without a prompt and with an adversarially-chosen prompt. Moreover, conditional training maintains the downstream task performance of standard LM pretraining, both before and after task-specific finetuning. Pretraining with human feedback results in much better preference satisfaction than standard LM pretraining followed by finetuning with feedback, i.e., learning and then unlearning undesirable behavior. Our results suggest that we should move beyond imitation learning when pretraining LMs and incorporate human preferences from the start of training.
Abstract:Social networks have become an indispensable part of our lives, with billions of people producing ever-increasing amounts of text. At such scales, content policies and their enforcement become paramount. To automate moderation, questionable content is detected by Natural Language Processing (NLP) classifiers. However, high-performance classifiers are hampered by misspellings and adversarial text perturbations. In this paper, we classify intentional and unintentional adversarial text perturbation into ten types and propose a deobfuscation pipeline to make NLP models robust to such perturbations. We propose Continuous Word2Vec (CW2V), our data-driven method to learn word embeddings that ensures that perturbations of words have embeddings similar to those of the original words. We show that CW2V embeddings are generally more robust to text perturbations than embeddings based on character ngrams. Our robust classification pipeline combines deobfuscation and classification, using proposed defense methods and word embeddings to classify whether Facebook posts are requesting engagement such as likes. Our pipeline results in engagement bait classification that goes from 0.70 to 0.67 AUC with adversarial text perturbation, while character ngram-based word embedding methods result in downstream classification that goes from 0.76 to 0.64.
Abstract:Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
Abstract:Cybercrime forums enable modern criminal entrepreneurs to collaborate with other criminals into increasingly efficient and sophisticated criminal endeavors. Understanding the connections between different products and services can often illuminate effective interventions. However, generating this understanding of supply chains currently requires time-consuming manual effort. In this paper, we propose a language-agnostic method to automatically extract supply chains from cybercrime forum posts and replies. Our supply chain detection algorithm can identify 36% and 58% relevant chains within major English and Russian forums, respectively, showing improvements over the baselines of 13% and 36%, respectively. Our analysis of the automatically generated supply chains demonstrates underlying connections between products and services within these forums. For example, the extracted supply chain illuminated the connection between hack-for-hire services and the selling of rare and valuable `OG' accounts, which has only recently been reported. The understanding of connections between products and services exposes potentially effective intervention points.