Abstract:Singing is one of the most cherished forms of human entertainment. However, creating a beautiful song requires an accompaniment that complements the vocals and aligns well with the song instruments and genre. With advancements in deep learning, previous research has focused on generating suitable accompaniments but often lacks precise alignment with the desired instrumentation and genre. To address this, we propose a straightforward method that enables control over the accompaniment through text prompts, allowing the generation of music that complements the vocals and aligns with the song instrumental and genre requirements. Through extensive experiments, we successfully generate 10-second accompaniments using vocal input and text control.
Abstract:Cardiovascular disease is a major global health concern, contributing significantly to global mortality. Accurately segmenting cardiac medical imaging data is crucial for reducing fatality rates associated with these conditions. However, current state-of-the-art (SOTA) neural networks, including CNN-based and Transformer-based approaches, face challenges in capturing both inter-slice connections and intra-slice details, especially in datasets featuring intricate, long-range details along the z-axis like coronary arteries. Existing methods also struggle with differentiating non-cardiac components from the myocardium, resulting in segmentation inaccuracies and the "spraying" phenomenon. To address these issues, we introduce RotCAtt-TransUNet++, a novel architecture designed for robust segmentation of intricate cardiac structures. Our approach enhances global context modeling through multiscale feature aggregation and nested skip connections in the encoder. Transformer layers facilitate capturing intra-slice interactions, while a rotatory attention mechanism handles inter-slice connectivity. A channel-wise cross-attention gate integrates multiscale information and decoder features, effectively bridging semantic gaps. Experimental results across multiple datasets demonstrate superior performance over current methods, achieving near-perfect annotation of coronary arteries and myocardium. Ablation studies confirm that our rotatory attention mechanism significantly improves segmentation accuracy by transforming embedded vectorized patches in semantic dimensional space.
Abstract:Negation is a fundamental linguistic concept used by humans to convey information that they do not desire. Despite this, there has been minimal research specifically focused on negation within vision-language tasks. This lack of research means that vision-language models (VLMs) may struggle to understand negation, implying that they struggle to provide accurate results. One barrier to achieving human-level intelligence is the lack of a standard collection by which research into negation can be evaluated. This paper presents the first large-scale dataset, Negative Instruction (NeIn), for studying negation within the vision-language domain. Our dataset comprises 530,694 quadruples, i.e., source image, original caption, negative sentence, and target image in total, including 495,694 queries for training and 35,000 queries for benchmarking across multiple vision-language tasks. Specifically, we automatically generate NeIn based on a large, existing vision-language dataset, MS-COCO, via two steps: generation and filtering. During the generation phase, we leverage two VLMs, BLIP and MagicBrush, to generate the target image and a negative clause that expresses the content of the source image. In the subsequent filtering phase, we apply BLIP to remove erroneous samples. Additionally, we introduce an evaluation protocol for negation understanding of image editing models. Extensive experiments using our dataset across multiple VLMs for instruction-based image editing tasks demonstrate that even recent state-of-the-art VLMs struggle to understand negative queries. The project page is: https://tanbuinhat.github.io/NeIn/
Abstract:Polyp segmentation, a critical concern in medical imaging, has prompted numerous proposed methods aimed at enhancing the quality of segmented masks. While current state-of-the-art techniques produce impressive results, the size and computational cost of these models pose challenges for practical industry applications. Recently, the Segment Anything Model (SAM) has been proposed as a robust foundation model, showing promise for adaptation to medical image segmentation. Inspired by this concept, we propose SAM-EG, a framework that guides small segmentation models for polyp segmentation to address the computation cost challenge. Additionally, in this study, we introduce the Edge Guiding module, which integrates edge information into image features to assist the segmentation model in addressing boundary issues from current segmentation model in this task. Through extensive experiments, our small models showcase their efficacy by achieving competitive results with state-of-the-art methods, offering a promising approach to developing compact models with high accuracy for polyp segmentation and in the broader field of medical imaging.
Abstract:Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. Currently, state-of-the-art techniques yield impressive results. However, the sheer size of these models poses challenges for practical industry applications. To address this, we present a Knowledge Distillation framework, incorporating attention supervision and the symmetrical guiding method. This framework is designed to facilitate knowledge transfer from a teacher model to a more compact student model with fewer parameters. Our experimental evaluation of the framework assesses its effectiveness in enabling the student model to acquire knowledge from the teacher efficiently. Additionally, our method serves to prevent the student model from incorporating redundant features that could lead to inaccurate predictions. Consequently, our method, boasting approximately 5 million parameters, achieves competitive results comparable to the state-of-the-art approaches. The implementation can be found at: https://github.com/huyquoctrinh/KDAS3
Abstract:Person Re-Identification (ReID) task seeks to enhance the tracking of multiple individuals by surveillance cameras. It provides additional support for multimodal tasks, including text-based person retrieval and human matching. One of the primary challenges in ReID is clothes-changing, which means the same person wears different clothes. While previous methods have achieved competitive results in maintaining clothing data consistency and handling clothing change data, they still tend to rely excessively on clothing information, thus limiting performance due to the dynamic nature of human appearances. To mitigate this challenge, we propose the Pose Guidance by Supervision (PGS) framework, an effective framework for learning pose guidance within the ReID task. This approach leverages pose knowledge and human part information from the pre-trained features to guide the network focus on clothes-irrelevant information, thus alleviating the clothes' influence on the deep learning model. Extensive experiments on five benchmark datasets demonstrate that our framework achieves competitive results compared with other state-of-the-art methods, which holds promise for developing robust models in the ReID task. Our code is available at https://github.com/huyquoctrinh/PGS.
Abstract:Medication recommendation is a vital task for improving patient care and reducing adverse events. However, existing methods often fail to capture the complex and dynamic relationships among patient medical records, drug efficacy and safety, and drug-drug interactions (DDI). In this paper, we propose ALGNet, a novel model that leverages light graph convolutional networks (LGCN) and augmentation memory networks (AMN) to enhance medication recommendation. LGCN can efficiently encode the patient records and the DDI graph into low-dimensional embeddings, while AMN can augment the patient representation with external knowledge from a memory module. We evaluate our model on the MIMIC-III dataset and show that it outperforms several baselines in terms of recommendation accuracy and DDI avoidance. We also conduct an ablation study to analyze the effects of different components of our model. Our results demonstrate that ALGNet can achieve superior performance with less computation and more interpretability. The implementation of this paper can be found at: https://github.com/huyquoctrinh/ALGNet.
Abstract:Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Deep learning has emerged as a promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps and abnormalities in real time. In addition to the algorithm's accuracy, transparency and interpretability are crucial to explaining the whys and hows of the algorithm's prediction. Further, most algorithms are developed in private data, closed source, or proprietary software, and methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we have organized the "Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image Segmentation (MedAI 2021)" competitions. We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic. For the transparency task, a multi-disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations to gain a deeper understanding of the models' credibility for clinical deployment. Through the comprehensive analysis of the challenge, we not only highlight the advancements in polyp and surgical instrument segmentation but also encourage qualitative evaluation for building more transparent and understandable AI-based colonoscopy systems.
Abstract:Polyp segmentation has recently garnered significant attention, and multiple methods have been formulated to achieve commendable outcomes. However, these techniques often confront difficulty when working with the complex polyp foreground and their surrounding regions because of the nature of convolution operation. Besides, most existing methods forget to exploit the potential information from multiple decoder stages. To address this challenge, we suggest combining MetaFormer, introduced as a baseline for integrating CNN and Transformer, with UNet framework and incorporating our Multi-scale Upsampling block (MU). This simple module makes it possible to combine multi-level information by exploring multiple receptive field paths of the shallow decoder stage and then adding with the higher stage to aggregate better feature representation, which is essential in medical image segmentation. Taken all together, we propose MetaFormer Multi-scale Upsampling Network (M$^2$UNet) for the polyp segmentation task. Extensive experiments on five benchmark datasets demonstrate that our method achieved competitive performance compared with several previous methods.
Abstract:In recent years, polyp segmentation has gained significant importance, and many methods have been developed using CNN, Vision Transformer, and Transformer techniques to achieve competitive results. However, these methods often face difficulties when dealing with out-of-distribution datasets, missing boundaries, and small polyps. In 2022, Meta-Former was introduced as a new baseline for vision, which not only improved the performance of multi-task computer vision but also addressed the limitations of the Vision Transformer and CNN family backbones. To further enhance segmentation, we propose a fusion of Meta-Former with UNet, along with the introduction of a Multi-scale Upsampling block with a level-up combination in the decoder stage to enhance the texture, also we propose the Convformer block base on the idea of the Meta-former to enhance the crucial information of the local feature. These blocks enable the combination of global information, such as the overall shape of the polyp, with local information and boundary information, which is crucial for the decision of the medical segmentation. Our proposed approach achieved competitive performance and obtained the top result in the State of the Art on the CVC-300 dataset, Kvasir, and CVC-ColonDB dataset. Apart from Kvasir-SEG, others are out-of-distribution datasets. The implementation can be found at: https://github.com/huyquoctrinh/MetaPolyp-CBMS2023.