Abstract:This paper investigates integrating large language models (LLMs) with advanced hardware, focusing on developing a general-purpose device designed for enhanced interaction with LLMs. Initially, we analyze the current landscape, where virtual assistants and LLMs are reshaping human-technology interactions, highlighting pivotal advancements and setting the stage for a new era of intelligent hardware. Despite substantial progress in LLM technology, a significant gap exists in hardware development, particularly concerning scalability, efficiency, affordability, and multimodal capabilities. This disparity presents both challenges and opportunities, underscoring the need for hardware that is not only powerful but also versatile and capable of managing the sophisticated demands of modern computation. Our proposed device addresses these needs by emphasizing scalability, multimodal data processing, enhanced user interaction, and privacy considerations, offering a comprehensive platform for LLM integration in various applications.
Abstract:As public awareness of environmental protection continues to grow, the trend of integrating more electric vehicles (EVs) into the transportation sector is rising. Unlike conventional internal combustion engine (ICE) vehicles, EVs can minimize carbon emissions and potentially achieve autonomous driving. However, several obstacles hinder the widespread adoption of EVs, such as their constrained driving range and the extended time required for charging. One alternative solution to address these challenges is implementing dynamic wireless power transfer (DWPT), charging EVs in motion on the road. Moreover, charging stations with static wireless power transfer (SWPT) infrastructure can replace existing gas stations, enabling users to charge EVs in parking lots or at home. This paper surveys the communication infrastructure for static and dynamic wireless charging in electric vehicles. It encompasses all communication aspects involved in the wireless charging process. The architecture and communication requirements for static and dynamic wireless charging are presented separately. Additionally, a comprehensive comparison of existing communication standards is provided. The communication with the grid is also explored in detail. The survey gives attention to security and privacy issues arising during communications. In summary, the paper addresses the challenges and outlines upcoming trends in communication for EV wireless charging.
Abstract:Recognition and localization of surgical detailed actions is an essential component of developing a context-aware decision support system. However, most existing detection algorithms fail to provide high-accuracy action classes even having their locations, as they do not consider the surgery procedure's regularity in the whole video. This limitation hinders their application. Moreover, implementing the predictions in clinical applications seriously needs to convey model confidence to earn entrustment, which is unexplored in surgical action prediction. In this paper, to accurately detect fine-grained actions that happen at every moment, we propose an anchor-context action detection network (ACTNet), including an anchor-context detection (ACD) module and a class conditional diffusion (CCD) module, to answer the following questions: 1) where the actions happen; 2) what actions are; 3) how confidence predictions are. Specifically, the proposed ACD module spatially and temporally highlights the regions interacting with the extracted anchor in surgery video, which outputs action location and its class distribution based on anchor-context interactions. Considering the full distribution of action classes in videos, the CCD module adopts a denoising diffusion-based generative model conditioned on our ACD estimator to further reconstruct accurately the action predictions. Moreover, we utilize the stochastic nature of the diffusion model outputs to access model confidence for each prediction. Our method reports the state-of-the-art performance, with improvements of 4.0% mAP against baseline on the surgical video dataset.
Abstract:The exponential growth of internet connected systems has generated numerous challenges, such as spectrum shortage issues, which require efficient spectrum sharing (SS) solutions. Complicated and dynamic SS systems can be exposed to different potential security and privacy issues, requiring protection mechanisms to be adaptive, reliable, and scalable. Machine learning (ML) based methods have frequently been proposed to address those issues. In this article, we provide a comprehensive survey of the recent development of ML based SS methods, the most critical security issues, and corresponding defense mechanisms. In particular, we elaborate the state-of-the-art methodologies for improving the performance of SS communication systems for various vital aspects, including ML based cognitive radio networks (CRNs), ML based database assisted SS networks, ML based LTE-U networks, ML based ambient backscatter networks, and other ML based SS solutions. We also present security issues from the physical layer and corresponding defending strategies based on ML algorithms, including Primary User Emulation (PUE) attacks, Spectrum Sensing Data Falsification (SSDF) attacks, jamming attacks, eavesdropping attacks, and privacy issues. Finally, extensive discussions on open challenges for ML based SS are also given. This comprehensive review is intended to provide the foundation for and facilitate future studies on exploring the potential of emerging ML for coping with increasingly complex SS and their security problems.
Abstract:A new machine learning (ML) technique termed as federated learning (FL) aims to preserve data at the edge devices and to only exchange ML model parameters in the learning process. FL not only reduces the communication needs but also helps to protect the local privacy. Although FL has these advantages, it can still experience large communication latency when there are massive edge devices connected to the central parameter server (PS) and/or millions of model parameters involved in the learning process. Over-the-air computation (AirComp) is capable of computing while transmitting data by allowing multiple devices to send data simultaneously by using analog modulation. To achieve good performance in FL through AirComp, user scheduling plays a critical role. In this paper, we investigate and compare different user scheduling policies, which are based on various criteria such as wireless channel conditions and the significance of model updates. Receiver beamforming is applied to minimize the mean-square-error (MSE) of the distortion of function aggregation result via AirComp. Simulation results show that scheduling based on the significance of model updates has smaller fluctuations in the training process while scheduling based on channel condition has the advantage on energy efficiency.