Abstract:The growing penetration of electric vehicles (EVs) significantly changes typical load curves in smart grids. With the development of fast charging technology, the volatility of EV charging demand is increasing, which requires additional flexibility for real-time power balance. The forecasting of EV charging demand involves probabilistic modeling of high dimensional time series dynamics across diverse electric vehicle charging stations (EVCSs). This paper studies the forecasting problem of multiple EVCS in a hierarchical probabilistic manner. For each charging station, a deep learning model based on a partial input convex neural network (PICNN) is trained to predict the day-ahead charging demand's conditional distribution, preventing the common quantile crossing problem in traditional quantile regression models. Then, differentiable convex optimization layers (DCLs) are used to reconcile the scenarios sampled from the distributions to yield coherent scenarios that satisfy the hierarchical constraint. It learns a better weight matrix for adjusting the forecasting results of different targets in a machine-learning approach compared to traditional optimization-based hierarchical reconciling methods. Numerical experiments based on real-world EV charging data are conducted to demonstrate the efficacy of the proposed method.
Abstract:Over the past decade, bidding in power markets has attracted widespread attention. Reinforcement Learning (RL) has been widely used for power market bidding as a powerful AI tool to make decisions under real-world uncertainties. However, current RL methods mostly employ low dimensional bids, which significantly diverge from the N price-power pairs commonly used in the current power markets. The N-pair bidding format is denoted as High Dimensional Bids (HDBs), which has not been fully integrated into the existing RL-based bidding methods. The loss of flexibility in current RL bidding methods could greatly limit the bidding profits and make it difficult to tackle the rising uncertainties brought by renewable energy generations. In this paper, we intend to propose a framework to fully utilize HDBs for RL-based bidding methods. First, we employ a special type of neural network called Neural Network Supply Functions (NNSFs) to generate HDBs in the form of N price-power pairs. Second, we embed the NNSF into a Markov Decision Process (MDP) to make it compatible with most existing RL methods. Finally, experiments on Energy Storage Systems (ESSs) in the PJM Real-Time (RT) power market show that the proposed bidding method with HDBs can significantly improve bidding flexibility, thereby improving the profit of the state-of-the-art RL bidding methods.
Abstract:The proliferation of novel industrial applications at the wireless edge, such as smart grids and vehicle networks, demands the advancement of cyber-physical systems. The performance of CPSs is closely linked to the last-mile wireless communication networks, which often become bottlenecks due to their inherent limited resources. Current CPS operations often treat wireless communication networks as unpredictable and uncontrollable variables, ignoring the potential adaptability of wireless networks, which results in inefficient and overly conservative CPS operations. Meanwhile, current wireless communications often focus more on throughput and other transmission-related metrics instead of CPS goals. In this study, we introduce the framework of goal-oriented wireless communication resource allocations, accounting for the semantics and significance of data for CPS operation goals. This guarantees optimal CPS performance from a cybernetic standpoint. We formulate a bandwidth allocation problem aimed at maximizing the information utility gain of transmitted data brought to CPS operation goals. Since the goal-oriented bandwidth allocation problem is a large-scale combinational problem, we propose a divide-and-conquer and greedy solution algorithm. The information utility gain is first approximately decomposed into marginal utility information gains and computed in a parallel manner. Subsequently, the bandwidth allocation problem is reformulated as a knapsack problem, which can be further solved greedily with a guaranteed sub-optimality gap. We further demonstrate how our proposed goal-oriented bandwidth allocation algorithm can be applied in four potential CPS applications, including data-driven decision-making, edge learning, federated learning, and distributed optimization.
Abstract:With the growing penetration of renewable energy resource, electricity market prices have exhibited greater volatility. Therefore, it is important for Energy Storage Systems(ESSs) to leverage the multidimensional nature of energy market bids to maximize profitability. However, current learning methods cannot fully utilize the high-dimensional price-quantity bids in the energy markets. To address this challenge, we modify the common reinforcement learning(RL) process by proposing a new bid representation method called Neural Network Embedded Bids (NNEBs). NNEBs refer to market bids that are represented by monotonic neural networks with discrete outputs. To achieve effective learning of NNEBs, we first learn a neural network as a strategic mapping from the market price to ESS power output with RL. Then, we re-train the network with two training modifications to make the network output monotonic and discrete. Finally, the neural network is equivalently converted into a high-dimensional bid for bidding. We conducted experiments over real-world market datasets. Our studies show that the proposed method achieves 18% higher profit than the baseline and up to 78% profit of the optimal market bidder.