Abstract:In recent years, artificial intelligence (AI) driven video generation has garnered significant attention due to advancements in stable diffusion and large language model techniques. Thus, there is a great demand for accurate video quality assessment (VQA) models to measure the perceptual quality of AI-generated content (AIGC) videos as well as optimize video generation techniques. However, assessing the quality of AIGC videos is quite challenging due to the highly complex distortions they exhibit (e.g., unnatural action, irrational objects, etc.). Therefore, in this paper, we try to systemically investigate the AIGC-VQA problem from both subjective and objective quality assessment perspectives. For the subjective perspective, we construct a Large-scale Generated Vdeo Quality assessment (LGVQ) dataset, consisting of 2,808 AIGC videos generated by 6 video generation models using 468 carefully selected text prompts. Unlike previous subjective VQA experiments, we evaluate the perceptual quality of AIGC videos from three dimensions: spatial quality, temporal quality, and text-to-video alignment, which hold utmost importance for current video generation techniques. For the objective perspective, we establish a benchmark for evaluating existing quality assessment metrics on the LGVQ dataset, which reveals that current metrics perform poorly on the LGVQ dataset. Thus, we propose a Unify Generated Video Quality assessment (UGVQ) model to comprehensively and accurately evaluate the quality of AIGC videos across three aspects using a unified model, which uses visual, textual and motion features of video and corresponding prompt, and integrates key features to enhance feature expression. We hope that our benchmark can promote the development of quality evaluation metrics for AIGC videos. The LGVQ dataset and the UGVQ metric will be publicly released.
Abstract:Traditional deep neural network (DNN)-based image quality assessment (IQA) models leverage convolutional neural networks (CNN) or Transformer to learn the quality-aware feature representation, achieving commendable performance on natural scene images. However, when applied to AI-Generated images (AGIs), these DNN-based IQA models exhibit subpar performance. This situation is largely due to the semantic inaccuracies inherent in certain AGIs caused by uncontrollable nature of the generation process. Thus, the capability to discern semantic content becomes crucial for assessing the quality of AGIs. Traditional DNN-based IQA models, constrained by limited parameter complexity and training data, struggle to capture complex fine-grained semantic features, making it challenging to grasp the existence and coherence of semantic content of the entire image. To address the shortfall in semantic content perception of current IQA models, we introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model, which utilizes semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts. Moreover, it employs a mixture of experts (MoE) structure to dynamically integrate the semantic information with the quality-aware features extracted by traditional DNN-based IQA models. Comprehensive experiments conducted on two AI-generated content datasets, AIGCQA-20k and AGIQA-3k show that MA-AGIQA achieves state-of-the-art performance, and demonstrate its superior generalization capabilities on assessing the quality of AGIs. Code is available at https://github.com/wangpuyi/MA-AGIQA.