NEUROSPIN, INRIA Saclay - Ile de France, LNAO
Abstract:We introduce MathWriting, the largest online handwritten mathematical expression dataset to date. It consists of 230k human-written samples and an additional 400k synthetic ones. MathWriting can also be used for offline HME recognition and is larger than all existing offline HME datasets like IM2LATEX-100K. We introduce a benchmark based on MathWriting data in order to advance research on both online and offline HME recognition.
Abstract:We are releasing a dataset of diagram drawings with dynamic drawing information. The dataset aims to foster research in interactive graphical symbolic understanding. The dataset was obtained using a prompted data collection effort.
Abstract:We describe an online handwriting system that is able to support 102 languages using a deep neural network architecture. This new system has completely replaced our previous Segment-and-Decode-based system and reduced the error rate by 20%-40% relative for most languages. Further, we report new state-of-the-art results on IAM-OnDB for both the open and closed dataset setting. The system combines methods from sequence recognition with a new input encoding using B\'ezier curves. This leads to up to 10x faster recognition times compared to our previous system. Through a series of experiments we determine the optimal configuration of our models and report the results of our setup on a number of additional public datasets.
Abstract:Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.