Abstract:Large language models (LLMs) can be used to generate natural language explanations (NLE) that are adapted to different users' situations. However, there is yet to be a quantitative evaluation of the extent of such adaptation. To bridge this gap, we collect a benchmarking dataset, Situation-Based Explanation. This dataset contains 100 explanandums. Each explanandum is paired with explanations targeted at three distinct audience types-such as educators, students, and professionals-enabling us to assess how well the explanations meet the specific informational needs and contexts of these diverse groups e.g. students, teachers, and parents. For each "explanandum paired with an audience" situation, we include a human-written explanation. These allow us to compute scores that quantify how the LLMs adapt the explanations to the situations. On an array of pretrained language models with varying sizes, we examine three categories of prompting methods: rule-based prompting, meta-prompting, and in-context learning prompting. We find that 1) language models can generate prompts that result in explanations more precisely aligned with the target situations, 2) explicitly modeling an "assistant" persona by prompting "You are a helpful assistant..." is not a necessary prompt technique for situated NLE tasks, and 3) the in-context learning prompts only can help LLMs learn the demonstration template but can't improve their inference performance. SBE and our analysis facilitate future research towards generating situated natural language explanations.
Abstract:The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io