Abstract:3D Multimodal Large Language Models (MLLMs) have recently made substantial advancements. However, their potential remains untapped, primarily due to the limited quantity and suboptimal quality of 3D datasets. Current approaches attempt to transfer knowledge from 2D MLLMs to expand 3D instruction data, but still face modality and domain gaps. To this end, we introduce PiSA-Engine (Point-Self-Augmented-Engine), a new framework for generating instruction point-language datasets enriched with 3D spatial semantics. We observe that existing 3D MLLMs offer a comprehensive understanding of point clouds for annotation, while 2D MLLMs excel at cross-validation by providing complementary information. By integrating holistic 2D and 3D insights from off-the-shelf MLLMs, PiSA-Engine enables a continuous cycle of high-quality data generation. We select PointLLM as the baseline and adopt this co-evolution training framework to develop an enhanced 3D MLLM, termed PointLLM-PiSA. Additionally, we identify limitations in previous 3D benchmarks, which often feature coarse language captions and insufficient category diversity, resulting in inaccurate evaluations. To address this gap, we further introduce PiSA-Bench, a comprehensive 3D benchmark covering six key aspects with detailed and diverse labels. Experimental results demonstrate PointLLM-PiSA's state-of-the-art performance in zero-shot 3D object captioning and generative classification on our PiSA-Bench, achieving significant improvements of 46.45% (+8.33%) and 63.75% (+16.25%), respectively. We will release the code, datasets, and benchmark.
Abstract:Large language models (LLMs) can be used to generate natural language explanations (NLE) that are adapted to different users' situations. However, there is yet to be a quantitative evaluation of the extent of such adaptation. To bridge this gap, we collect a benchmarking dataset, Situation-Based Explanation. This dataset contains 100 explanandums. Each explanandum is paired with explanations targeted at three distinct audience types-such as educators, students, and professionals-enabling us to assess how well the explanations meet the specific informational needs and contexts of these diverse groups e.g. students, teachers, and parents. For each "explanandum paired with an audience" situation, we include a human-written explanation. These allow us to compute scores that quantify how the LLMs adapt the explanations to the situations. On an array of pretrained language models with varying sizes, we examine three categories of prompting methods: rule-based prompting, meta-prompting, and in-context learning prompting. We find that 1) language models can generate prompts that result in explanations more precisely aligned with the target situations, 2) explicitly modeling an "assistant" persona by prompting "You are a helpful assistant..." is not a necessary prompt technique for situated NLE tasks, and 3) the in-context learning prompts only can help LLMs learn the demonstration template but can't improve their inference performance. SBE and our analysis facilitate future research towards generating situated natural language explanations.
Abstract:The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io