Abstract:Tracking the full body motions of users in XR (AR/VR) devices is a fundamental challenge to bring a sense of authentic social presence. Due to the absence of dedicated leg sensors, currently available body tracking methods adopt a synthesis approach to generate plausible motions given a 3-point signal from the head and controller tracking. In order to enable mixed reality features, modern XR devices are capable of estimating depth information of the headset surroundings using available sensors combined with dedicated machine learning models. Such egocentric depth sensing cannot drive the body directly, as it is not registered and is incomplete due to limited field-of-view and body self-occlusions. For the first time, we propose to leverage the available depth sensing signal combined with self-supervision to learn a multi-modal pose estimation model capable of tracking full body motions in real time on XR devices. We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities using a semantic point cloud encoder network combined with a residual network for multi-modal pose estimation. These modules are trained jointly in a self-supervised way, leveraging a combination of real unregistered point clouds and simulated data obtained from motion capture. We compare our approach against several state-of-the-art systems for XR body tracking and show that our method accurately tracks a diverse range of body motions. XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.
Abstract:The quality and generality of deep image features is crucially determined by the data they have been trained on, but little is known about this often overlooked effect. In this paper, we systematically study the effect of variations in the training data by evaluating deep features trained on different image sets in a few-shot classification setting. The experimental protocol we define allows to explore key practical questions. What is the influence of the similarity between base and test classes? Given a fixed annotation budget, what is the optimal trade-off between the number of images per class and the number of classes? Given a fixed dataset, can features be improved by splitting or combining different classes? Should simple or diverse classes be annotated? In a wide range of experiments, we provide clear answers to these questions on the miniImageNet, ImageNet and CUB-200 benchmarks. We also show how the base dataset design can improve performance in few-shot classification more drastically than replacing a simple baseline by an advanced state of the art algorithm.
Abstract:Deep image generation is becoming a tool to enhance artists and designers creativity potential. In this paper, we aim at making the generation process easier to understand and interact with. Inspired by vector graphics systems, we propose a new deep generation paradigm where the images are composed of simple layers, defined by their color and a parametric transparency mask. This presents a number of advantages compared to the commonly used convolutional network architectures. In particular, our layered decomposition allows simple user interaction, for example to update a given mask, or change the color of a selected layer. From a compact code, our architecture also generates images with a virtually infinite resolution, the color at each point in an image being a parametric function of its coordinates. We validate the viability of our approach in the auto-encoding framework by comparing reconstructions with state-of-the-art baselines given similar memory resources on CIFAR10, CelebA and ImageNet datasets and demonstrate several applications. We also show Generative Adversarial Network (GAN) results qualitatively different from the ones obtained with common approaches.
Abstract:Can an algorithm create original and compelling fashion designs to serve as an inspirational assistant? To help answer this question, we design and investigate different image generation models associated with different loss functions to boost creativity in fashion generation. The dimensions of our explorations include: (i) different Generative Adversarial Networks architectures that start from noise vectors to generate fashion items, (ii) novel loss functions that encourage novelty, inspired from Sharma-Mittal divergence, a generalized mutual information measure for the widely used relative entropies such as Kullback-Leibler, and (iii) a generation process following the key elements of fashion design (disentangling shape and texture components). A key challenge of this study is the evaluation of generated designs and the retrieval of best ones, hence we put together an evaluation protocol associating automatic metrics and human experimental studies that we hope will help ease future research. We show that our proposed creativity criterion yield better overall appreciation than the one employed in Creative Adversarial Networks. In the end, about 61% of our images are thought to be created by human designers rather than by a computer while also being considered original per our human subject experiments, and our proposed loss scores the highest compared to existing losses in both novelty and likability.