Abstract:Early and timely prediction of patient care demand not only affects effective resource allocation but also influences clinical decision-making as well as patient experience. Accurately predicting patient care demand, however, is a ubiquitous challenge for hospitals across the world due, in part, to the demand's time-varying temporal variability, and, in part, to the difficulty in modelling trends in advance. To address this issue, here, we develop two methods, a relatively simple time-vary linear model, and a more advanced neural network model. The former forecasts patient arrivals hourly over a week based on factors such as day of the week and previous 7-day arrival patterns. The latter leverages a long short-term memory (LSTM) model, capturing non-linear relationships between past data and a three-day forecasting window. We evaluate the predictive capabilities of the two proposed approaches compared to two na\"ive approaches - a reduced-rank vector autoregressive (VAR) model and the TBATS model. Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand. Additionally, the linear model is more explainable thanks to its simple architecture, whereas, by accurately modelling weekly seasonal trends, the LSTM model delivers lower prediction errors. Taken together, our explorations suggest the utility of machine learning in predicting time-varying patient care demand; additionally, it is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
Abstract:Human sleep is cyclical with a period of approximately 90 minutes, implying long temporal dependency in the sleep data. Yet, exploring this long-term dependency when developing sleep staging models has remained untouched. In this work, we show that while encoding the logic of a whole sleep cycle is crucial to improve sleep staging performance, the sequential modelling approach in existing state-of-the-art deep learning models are inefficient for that purpose. We thus introduce a method for efficient long sequence modelling and propose a new deep learning model, L-SeqSleepNet, which takes into account whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on four distinct databases of various sizes, we demonstrate state-of-the-art performance obtained by the model over three different EEG setups, including scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear EEG (cEEGrid), even with a single EEG channel input. Our analyses also show that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major class in terms of classification) to bring down errors in other sleep stages. Moreover the network becomes much more robust, meaning that for all subjects where the baseline method had exceptionally poor performance, their performance are improved significantly. Finally, the computation time only grows at a sub-linear rate when the sequence length increases.
Abstract:Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying the idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time.
Abstract:Black-box skepticism is one of the main hindrances impeding deep-learning-based automatic sleep scoring from being used in clinical environments. Towards interpretability, this work proposes a sequence-to-sequence sleep-staging model, namely SleepTransformer. It is based on the transformer backbone whose self-attention scores offer interpretability of the model's decisions at both the epoch and sequence level. At the epoch level, the attention scores can be encoded as a heat map to highlight sleep-relevant features captured from the input EEG signal. At the sequence level, the attention scores are visualized as the influence of different neighboring epochs in an input sequence (i.e. the context) to recognition of a target epoch, mimicking the way manual scoring is done by human experts. We further propose a simple yet efficient method to quantify uncertainty in the model's decisions. The method, which is based on entropy, can serve as a metric for deferring low-confidence epochs to a human expert for further inspection. Additionally, we demonstrate that the proposed SleepTransformer outperforms existing methods at a lower computational cost and achieves state-of-the-art performance on two experimental databases of different sizes.
Abstract:We propose in this work a multi-view learning approach for audio and music classification. Considering four typical low-level representations (i.e. different views) commonly used for audio and music recognition tasks, the proposed multi-view network consists of four subnetworks, each handling one input types. The learned embedding in the subnetworks are then concatenated to form the multi-view embedding for classification similar to a simple concatenation network. However, apart from the joint classification branch, the network also maintains four classification branches on the single-view embedding of the subnetworks. A novel method is then proposed to keep track of the learning behavior on the classification branches and adapt their weights to proportionally blend their gradients for network training. The weights are adapted in such a way that learning on a branch that is generalizing well will be encouraged whereas learning on a branch that is overfitting will be slowed down. Experiments on three different audio and music classification tasks show that the proposed multi-view network not only outperforms the single-view baselines but also is superior to the multi-view baselines based on concatenation and late fusion.
Abstract:Existing generative adversarial networks (GANs) for speech enhancement solely rely on the convolution operation, which may obscure temporal dependencies across the sequence input. To remedy this issue, we propose a self-attention layer adapted from non-local attention, coupled with the convolutional and deconvolutional layers of a speech enhancement GAN (SEGAN) using raw signal input. Further, we empirically study the effect of placing the self-attention layer at the (de)convolutional layers with varying layer indices as well as at all of them when memory allows. Our experiments show that introducing self-attention to SEGAN leads to consistent improvement across the objective evaluation metrics of enhancement performance. Furthermore, applying at different (de)convolutional layers does not significantly alter performance, suggesting that it can be conveniently applied at the highest-level (de)convolutional layer with the smallest memory overhead.
Abstract:Automating sleep staging is vital to scale up sleep assessment and diagnosis to millions of people experiencing sleep deprivation and disorders and to enable longitudinal sleep monitoring in home environments. Learning from raw polysomnography signals and their derived time-frequency images has been prevalent. However, learning from multi-view inputs (e.g. both the raw signals and the time-frequency images) for sleep staging is difficult and not well understood. This work proposes a sequence-to-sequence sleep staging model, XSleepNet, that is capable of learning a joint representation from both raw signals and time-frequency images effectively. Since different views often generalize (and overfit) at different rates, the proposed network is trained in such a way that the learning pace on each view is adapted based on their generalization/overfitting behavior. In simple terms, the learning on a particular view is speeded up when it is generalizing well and slowed down when it is overfitting. View-specific generalization/overfitting measures are computed on-the-fly during the training course and used to derive weights to blend the gradients from different views. As a result, the network is able to retain representation power of different views in the joint features which represent the underlying distribution better than those learned by each individual view alone. Furthermore, the XSleepNet architecture is principally designed to gain robustness to the amount of training data and to increase the complementarity between the input views. Experimental results on five databases of different size show that XSleepNet consistently results in better performance than the single-view baselines as well as the multi-view baseline with a simple fusion strategy. Finally, XSleepNet outperforms all prior sleep staging methods and sets new state-of-the-art results on the experimental databases.
Abstract:Brain waves vary between people. An obvious way to improve automatic sleep staging for longitudinal sleep monitoring is personalization of algorithms based on individual characteristics extracted from the first night of data. As a single night is a very small amount of data to train a sleep staging model, we propose a Kullback-Leibler (KL) divergence regularized transfer learning approach to address this problem. We employ the pretrained SeqSleepNet (i.e. the subject independent model) as a starting point and finetune it with the single-night personalization data to derive the personalized model. This is done by adding the KL divergence between the output of the subject independent model and the output of the personalized model to the loss function during finetuning. In effect, KL-divergence regularization prevents the personalized model from overfitting to the single-night data and straying too far away from the subject independent model. Experimental results on the Sleep-EDF Expanded database with 75 subjects show that sleep staging personalization with a single-night data is possible with help of the proposed KL-divergence regularization. On average, we achieve a personalized sleep staging accuracy of 79.6%, a Cohen's kappa of 0.706, a macro F1-score of 73.0%, a sensitivity of 71.8%, and a specificity of 94.2%. We find both that the approach is robust against overfitting and that it improves the accuracy by 4.5 percentage points compared to non-personalization and 2.2 percentage points compared to personalization without regularization.
Abstract:Generative adversarial networks (GAN) have recently been shown to be efficient for speech enhancement. Most, if not all, existing speech enhancement GANs (SEGANs) make use of a single generator to perform one-stage enhancement mapping. In this work, we propose two novel SEGAN frameworks, iterated SEGAN (ISEGAN) and deep SEGAN (DSEGAN). In the two proposed frameworks, the GAN architectures are composed of multiple generators that are chained to accomplish multiple-stage enhancement mapping which gradually refines the noisy input signals in stage-wise fashion. On the one hand, ISEGAN's generators share their parameters to learn an iterative enhancement mapping. On the other hand, DSEGAN's generators share a common architecture but their parameters are independent; as a result, different enhancement mappings are learned at different stages of the network. We empirically demonstrate favorable results obtained by the proposed ISEGAN and DSEGAN frameworks over the vanilla SEGAN. The source code is available at http://github.com/pquochuy/idsegan.
Abstract:Although large annotated sleep databases are publicly available, and might be used to train automated scoring algorithms, it might still be a challenge to develop an optimal algorithm for your personal sleep study, which might have few subjects or rely on a different recording setup. Both directly applying a learned algorithm or retraining the algorithm on your rather small database is suboptimal. And definitely state-of-the-art sleep staging algorithms based on deep neural networks demand a large amount of data to be trained. This work presents a deep transfer learning approach to overcome the channel mismatch problem and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks adhering to this framework as a device for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain, i.e. the small cohort, to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on four different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, the Surrey-cEEGGrid database, and the Surrey-PSG database. The target domains are purposely adopted to cover different degrees of channel mismatch to the source domain. Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach and we discuss the impact of various fine tuning approaches.