Abstract:This paper is a report of the Workshop on Simulations for Information Access (Sim4IA) workshop at SIGIR 2024. The workshop had two keynotes, a panel discussion, nine lightning talks, and two breakout sessions. Key takeaways were user simulation's importance in academia and industry, the possible bridging of online and offline evaluation, and the issues of organizing a companion shared task around user simulations for information access. We report on how we organized the workshop, provide a brief overview of what happened at the workshop, and summarize the main topics and findings of the workshop and future work.
Abstract:In this paper, we present a new approach to improving the relevance and reliability of medical IR, which builds upon the concept of Level of Evidence (LoE). LoE framework categorizes medical publications into 7 distinct levels based on the underlying empirical evidence. Despite LoE framework's relevance in medical research and evidence-based practice, only few medical publications explicitly state their LoE. Therefore, we develop a classification model for automatically assigning LoE to medical publications, which successfully classifies over 26 million documents in MEDLINE database into LoE classes. The subsequent retrieval experiments on TREC PM datasets show substantial improvements in retrieval relevance, when LoE is used as a search filter.
Abstract:Simulating user interactions enables a more user-oriented evaluation of information retrieval (IR) systems. While user simulations are cost-efficient and reproducible, many approaches often lack fidelity regarding real user behavior. Most notably, current user models neglect the user's context, which is the primary driver of perceived relevance and the interactions with the search results. To this end, this work introduces the simulation of context-driven query reformulations. The proposed query generation methods build upon recent Large Language Model (LLM) approaches and consider the user's context throughout the simulation of a search session. Compared to simple context-free query generation approaches, these methods show better effectiveness and allow the simulation of more efficient IR sessions. Similarly, our evaluations consider more interaction context than current session-based measures and reveal interesting complementary insights in addition to the established evaluation protocols. We conclude with directions for future work and provide an entirely open experimental setup.
Abstract:Evaluating retrieval performance without editorial relevance judgments is challenging, but instead, user interactions can be used as relevance signals. Living labs offer a way for small-scale platforms to validate information retrieval systems with real users. If enough user interaction data are available, click models can be parameterized from historical sessions to evaluate systems before exposing users to experimental rankings. However, interaction data are sparse in living labs, and little is studied about how click models can be validated for reliable user simulations when click data are available in moderate amounts. This work introduces an evaluation approach for validating synthetic usage data generated by click models in data-sparse human-in-the-loop environments like living labs. We ground our methodology on the click model's estimates about a system ranking compared to a reference ranking for which the relative performance is known. Our experiments compare different click models and their reliability and robustness as more session log data becomes available. In our setup, simple click models can reliably determine the relative system performance with already 20 logged sessions for 50 queries. In contrast, more complex click models require more session data for reliable estimates, but they are a better choice in simulated interleaving experiments when enough session data are available. While it is easier for click models to distinguish between more diverse systems, it is harder to reproduce the system ranking based on the same retrieval algorithm with different interpolation weights. Our setup is entirely open, and we share the code to reproduce the experiments.
Abstract:This report documents the program and the outcomes of Dagstuhl Seminar 23031 ``Frontiers of Information Access Experimentation for Research and Education'', which brought together 37 participants from 12 countries. The seminar addressed technology-enhanced information access (information retrieval, recommender systems, natural language processing) and specifically focused on developing more responsible experimental practices leading to more valid results, both for research as well as for scientific education. The seminar brought together experts from various sub-fields of information access, namely IR, RS, NLP, information science, and human-computer interaction to create a joint understanding of the problems and challenges presented by next generation information access systems, from both the research and the experimentation point of views, to discuss existing solutions and impediments, and to propose next steps to be pursued in the area in order to improve not also our research methods and findings but also the education of the new generation of researchers and developers. The seminar featured a series of long and short talks delivered by participants, who helped in setting a common ground and in letting emerge topics of interest to be explored as the main output of the seminar. This led to the definition of five groups which investigated challenges, opportunities, and next steps in the following areas: reality check, i.e. conducting real-world studies, human-machine-collaborative relevance judgment frameworks, overcoming methodological challenges in information retrieval and recommender systems through awareness and education, results-blind reviewing, and guidance for authors.
Abstract:Online retailers often offer a vast choice of products to their customers to filter and browse through. The order in which the products are listed depends on the ranking algorithm employed in the online shop. State-of-the-art ranking methods are complex and draw on many different information, e.g., user query and intent, product attributes, popularity, recency, reviews, or purchases. However, approaches that incorporate user-generated data such as click-through data, user ratings, or reviews disadvantage new products that have not yet been rated by customers. We therefore propose the User-Needs-Driven Ranking (UNDR) method that accounts for explicit customer needs by using facet popularity and facet value popularity. As a user-centered approach that does not rely on post-purchase ratings or reviews, our method bypasses the cold-start problem while still reflecting the needs of an average customer. In two preliminary user studies, we compare our ranking method with a rating-based ranking baseline. Our findings show that our proposed approach generates a ranking that fits current customer needs significantly better than the baseline. However, a more fine-grained usage-specific ranking did not further improve the ranking.
Abstract:Shopping online is more and more frequent in our everyday life. For e-commerce search systems, understanding natural language coming through voice assistants, chatbots or from conversational search is an essential ability to understand what the user really wants. However, evaluation datasets with natural and detailed information needs of product-seekers which could be used for research do not exist. Due to privacy issues and competitive consequences, only few datasets with real user search queries from logs are openly available. In this paper, we present a dataset of 3,540 natural language queries in two domains that describe what users want when searching for a laptop or a jacket of their choice. The dataset contains annotations of vague terms and key facts of 1,754 laptop queries. This dataset opens up a range of research opportunities in the fields of natural language processing and (interactive) information retrieval for product search.
Abstract:Search systems on the Web rely on user input to generate relevant results. Since early information retrieval systems, users are trained to issue keyword searches and adapt to the language of the system. Recent research has shown that users often withhold detailed information about their initial information need, although they are able to express it in natural language. We therefore conduct a user study (N = 139) to investigate how four different design variants of search interfaces can encourage the user to reveal more information. Our results show that a chatbot-inspired search interface can increase the number of mentioned product attributes by 84% and promote natural language formulations by 139% in comparison to a standard search bar interface.
Abstract:Moffat recently commented on our previous work. Our work focused on how laying the foundations of our evaluation methodology into the theory of measurement can improve our knowledge and understanding of the evaluation measures we use in IR and how it can shed light on the different types of scales adopted by our evaluation measures; we also provided evidence, through extensive experimentation, on the impact of the different types of scales on the statistical analyses, as well as on the impact of departing from their assumptions. Moreover, we investigated, for the first time in IR, the concept of meaningfulness, i.e. the invariance of the experimental statements and inferences you draw, and proposed it as a way to ensure more valid and generalizabile results. Moffat's comments build on: (i) misconceptions about the representational theory of measurement, such as what an interval scale actually is and what axioms it has to comply with; (ii) they totally miss the central concept of meaningfulness. Therefore, we reply to Moffat's comments by properly framing them in the representational theory of measurement and in the concept of meaningfulness. All in all, we can only reiterate what we said several times: the goal of this research line is to theoretically ground our evaluation methodology - and IR is a field where it is extremely challenging to perform any theoretical advances - in order to aim for more robust and generalizable inferences - something we currently lack in the field. Possibly there are other and better ways to achieve this objective and these proposals could emerge from an open discussion in the field and from the work of others. On the other hand, reducing everything to a contrast on what is (or pretend to be) an interval scale or whether all or none evaluation measures are interval scales may be more a barrier from than a help in progressing towards this goal.
Abstract:System-oriented IR evaluations are limited to rather abstract understandings of real user behavior. As a solution, simulating user interactions provides a cost-efficient way to support system-oriented experiments with more realistic directives when no interaction logs are available. While there are several user models for simulated clicks or result list interactions, very few attempts have been made towards query simulations, and it has not been investigated if these can reproduce properties of real queries. In this work, we validate simulated user query variants with the help of TREC test collections in reference to real user queries that were made for the corresponding topics. Besides, we introduce a simple yet effective method that gives better reproductions of real queries than the established methods. Our evaluation framework validates the simulations regarding the retrieval performance, reproducibility of topic score distributions, shared task utility, effort and effect, and query term similarity when compared with real user query variants. While the retrieval effectiveness and statistical properties of the topic score distributions as well as economic aspects are close to that of real queries, it is still challenging to simulate exact term matches and later query reformulations.