Abstract:In multi-label emotion classification, particularly for low-resource languages like Arabic, the challenges of class imbalance and label correlation hinder model performance, especially in accurately predicting minority emotions. To address these issues, this study proposes a novel approach that combines stacked embeddings, meta-learning, and a hybrid loss function to enhance multi-label emotion classification for the Arabic language. The study extracts contextual embeddings from three fine-tuned language models-ArabicBERT, MarBERT, and AraBERT-which are then stacked to form enriched embeddings. A meta-learner is trained on these stacked embeddings, and the resulting concatenated representations are provided as input to a Bi-LSTM model, followed by a fully connected neural network for multi-label classification. To further improve performance, a hybrid loss function is introduced, incorporating class weighting, label correlation matrix, and contrastive learning, effectively addressing class imbalances and improving the handling of label correlations. Extensive experiments validate the proposed model's performance across key metrics such as Precision, Recall, F1-Score, Jaccard Accuracy, and Hamming Loss. The class-wise performance analysis demonstrates the hybrid loss function's ability to significantly reduce disparities between majority and minority classes, resulting in a more balanced emotion classification. An ablation study highlights the contribution of each component, showing the superiority of the model compared to baseline approaches and other loss functions. This study not only advances multi-label emotion classification for Arabic but also presents a generalizable framework that can be adapted to other languages and domains, providing a significant step forward in addressing the challenges of low-resource emotion classification tasks.
Abstract:Autonomous selection of optimal options for data collection from multiple alternatives is challenging in uncertain environments. When secondary information about options is accessible, such problems can be framed as contextual multi-armed bandits (CMABs). Neuro-inspired active inference has gained interest for its ability to balance exploration and exploitation using the expected free energy objective function. Unlike previous studies that showed the effectiveness of active inference based strategy for CMABs using synthetic data, this study aims to apply active inference to realistic scenarios, using a simulated mineralogical survey site selection problem. Hyperspectral data from AVIRIS-NG at Cuprite, Nevada, serves as contextual information for predicting outcome probabilities, while geologists' mineral labels represent outcomes. Monte Carlo simulations assess the robustness of active inference against changing expert preferences. Results show that active inference requires fewer iterations than standard bandit approaches with real-world noisy and biased data, and performs better when outcome preferences vary online by adapting the selection strategy to align with expert shifts.
Abstract:When a robot autonomously performs a complex task, it frequently must balance competing objectives while maintaining safety. This becomes more difficult in uncertain environments with stochastic outcomes. Enhancing transparency in the robot's behavior and aligning with user preferences are also crucial. This paper introduces a novel framework for multi-objective reinforcement learning that ensures safe task execution, optimizes trade-offs between objectives, and adheres to user preferences. The framework has two main layers: a multi-objective task planner and a high-level selector. The planning layer generates a set of optimal trade-off plans that guarantee satisfaction of a temporal logic task. The selector uses active inference to decide which generated plan best complies with user preferences and aids learning. Operating iteratively, the framework updates a parameterized learning model based on collected data. Case studies and benchmarks on both manipulation and mobile robots show that our framework outperforms other methods and (i) learns multiple optimal trade-offs, (ii) adheres to a user preference, and (iii) allows the user to adjust the balance between (i) and (ii).
Abstract:We consider the problem of evaluating dynamic consistency in discrete time probabilistic filters that approximate stochastic system state densities with Gaussian mixtures. Dynamic consistency means that the estimated probability distributions correctly describe the actual uncertainties. As such, the problem of consistency testing naturally arises in applications with regards to estimator tuning and validation. However, due to the general complexity of the density functions involved, straightforward approaches for consistency testing of mixture-based estimators have remained challenging to define and implement. This paper derives a new exact result for Gaussian mixture consistency testing within the framework of normalized deviation squared (NDS) statistics. It is shown that NDS test statistics for generic multivariate Gaussian mixture models exactly follow mixtures of generalized chi-square distributions, for which efficient computational tools are available. The accuracy and utility of the resulting consistency tests are numerically demonstrated on static and dynamic mixture estimation examples.
Abstract:For robotic decision-making under uncertainty, the balance between exploitation and exploration of available options must be carefully taken into account. In this study, we introduce a new variant of contextual multi-armed bandits called observation-augmented CMABs (OA-CMABs) wherein a decision-making agent can utilize extra outcome observations from an external information source. CMABs model the expected option outcomes as a function of context features and hidden parameters, which are inferred from previous option outcomes. In OA-CMABs, external observations are also a function of context features and thus provide additional evidence about the hidden parameters. Yet, if an external information source is error-prone, the resulting posterior updates can harm decision-making performance unless the presence of errors is considered. To this end, we propose a robust Bayesian inference process for OA-CMABs that is based on the concept of probabilistic data validation. Our approach handles complex mixture model parameter priors and hybrid observation likelihoods for semantic data sources, allowing us to develop validation algorithms based on recently develop probabilistic semantic data association techniques. Furthermore, to more effectively cope with the combined sources of uncertainty in OA-CMABs, we derive a new active inference algorithm for option selection based on expected free energy minimization. This generalizes previous work on active inference for bandit-based robotic decision-making by accounting for faulty observations and non-Gaussian inference. Our approaches are demonstrated on a simulated asynchronous search site selection problem for space exploration. The results show that even if incorrect observations are provided by external information sources, efficient decision-making and robust parameter inference are still achieved in a wide variety of experimental conditions.
Abstract:Current methods of deploying robots that operate in dynamic, uncertain environments, such as Uncrewed Aerial Systems in search \& rescue missions, require nearly continuous human supervision for vehicle guidance and operation. These methods do not consider high-level mission context resulting in cumbersome manual operation or inefficient exhaustive search patterns. We present a human-centered autonomous framework that infers geospatial mission context through dynamic feature sets, which then guides a probabilistic target search planner. Operators provide a set of diverse inputs, including priority definition, spatial semantic information about ad-hoc geographical areas, and reference waypoints, which are probabilistically fused with geographical database information and condensed into a geospatial distribution representing an operator's preferences over an area. An online, POMDP-based planner, optimized for target searching, is augmented with this reward map to generate an operator-constrained policy. Our results, simulated based on input from five professional rescuers, display effective task mental model alignment, 18\% more victim finds, and 15 times more efficient guidance plans then current operational methods.
Abstract:BIQA (Blind Image Quality Assessment) is an important field of study that evaluates images automatically. Although significant progress has been made, blind image quality assessment remains a difficult task since images vary in content and distortions. Most algorithms generate quality without emphasizing the important region of interest. In order to solve this, a multi-stream spatial and channel attention-based algorithm is being proposed. This algorithm generates more accurate predictions with a high correlation to human perceptual assessment by combining hybrid features from two different backbones, followed by spatial and channel attention to provide high weights to the region of interest. Four legacy image quality assessment datasets are used to validate the effectiveness of our proposed approach. Authentic and synthetic distortion image databases are used to demonstrate the effectiveness of the proposed method, and we show that it has excellent generalization properties with a particular focus on the perceptual foreground information.
Abstract:The nonlinear and stochastic relationship between noise covariance parameter values and state estimator performance makes optimal filter tuning a very challenging problem. Popular optimization-based tuning approaches can easily get trapped in local minima, leading to poor noise parameter identification and suboptimal state estimation. Recently, black box techniques based on Bayesian optimization with Gaussian processes (GPBO) have been shown to overcome many of these issues, using normalized estimation error squared (NEES) and normalized innovation error (NIS) statistics to derive cost functions for Kalman filter auto-tuning. While reliable noise parameter estimates are obtained in many cases, GPBO solutions obtained with these conventional cost functions do not always converge to optimal filter noise parameters and lack robustness to parameter ambiguities in time-discretized system models. This paper addresses these issues by making two main contributions. First, we show that NIS and NEES errors are only chi-squared distributed for tuned estimators. As a result, chi-square tests are not sufficient to ensure that an estimator has been correctly tuned. We use this to extend the familiar consistency tests for NIS and NEES to penalize if the distribution is not chi-squared distributed. Second, this cost measure is applied within a Student-t processes Bayesian Optimization (TPBO) to achieve robust estimator performance for time discretized state space models. The robustness, accuracy, and reliability of our approach are illustrated on classical state estimation problems.
Abstract:Digital images contain a lot of redundancies, therefore, compression techniques are applied to reduce the image size without loss of reasonable image quality. Same become more prominent in the case of videos which contains image sequences and higher compression ratios are achieved in low throughput networks. Assessment of quality of images in such scenarios has become of particular interest. Subjective evaluation in most of the scenarios is infeasible so objective evaluation is preferred. Among the three objective quality measures, full-reference and reduced-reference methods require an original image in some form to calculate the image quality which is unfeasible in scenarios such as broadcasting, acquisition or enhancement. Therefore, a no-reference Perceptual Image Quality Index (PIQI) is proposed in this paper to assess the quality of digital images which calculates luminance and gradient statistics along with mean subtracted contrast normalized products in multiple scales and color spaces. These extracted features are provided to a stacked ensemble of Gaussian Process Regression (GPR) to perform the perceptual quality evaluation. The performance of the PIQI is checked on six benchmark databases and compared with twelve state-of-the-art methods and competitive results are achieved. The comparison is made based on RMSE, Pearson and Spearman correlation coefficients between ground truth and predicted quality scores. The scores of 0.0552, 0.9802 and 0.9776 are achieved respectively for these metrics on CSIQ database. Two cross-dataset evaluation experiments are performed to check the generalization of PIQI.
Abstract:Blind image quality assessment is a challenging task particularly due to the unavailability of reference information. Training a deep neural network requires a large amount of training data which is not readily available for image quality. Transfer learning is usually opted to overcome this limitation and different deep architectures are used for this purpose as they learn features differently. After extensive experiments, we have designed a deep architecture containing two CNN architectures as its sub-units. Moreover, a self-collected image database BIQ2021 is proposed with 12,000 images having natural distortions. The self-collected database is subjectively scored and is used for model training and validation. It is demonstrated that synthetic distortion databases cannot provide generalization beyond the distortion types used in the database and they are not ideal candidates for general-purpose image quality assessment. Moreover, a large-scale database of 18.75 million images with synthetic distortions is used to pretrain the model and then retrain it on benchmark databases for evaluation. Experiments are conducted on six benchmark databases three of which are synthetic distortion databases (LIVE, CSIQ and TID2013) and three are natural distortion databases (LIVE Challenge Database, CID2013 and KonIQ-10 k). The proposed approach has provided a Pearson correlation coefficient of 0.8992, 0.8472 and 0.9452 subsequently and Spearman correlation coefficient of 0.8863, 0.8408 and 0.9421. Moreover, the performance is demonstrated using perceptually weighted rank correlation to indicate the perceptual superiority of the proposed approach. Multiple experiments are conducted to validate the generalization performance of the proposed model by training on different subsets of the databases and validating on the test subset of BIQ2021 database.