Abstract:Transformer has been widely-used in many Natural Language Processing (NLP) tasks and the scaled dot-product attention between tokens is a core module of Transformer. This attention is a token-wise design and its complexity is quadratic to the length of sequence, limiting its application potential for long sequence tasks. In this paper, we propose a dimension-wise attention mechanism based on which a novel language modeling approach (namely TensorCoder) can be developed. The dimension-wise attention can reduce the attention complexity from the original $O(N^2d)$ to $O(Nd^2)$, where $N$ is the length of the sequence and $d$ is the dimensionality of head. We verify TensorCoder on two tasks including masked language modeling and neural machine translation. Compared with the original Transformer, TensorCoder not only greatly reduces the calculation of the original model but also obtains improved performance on masked language modeling task (in PTB dataset) and comparable performance on machine translation tasks.
Abstract:RGB-D salient object detection aims to identify the most visually distinctive objects in a pair of color and depth images. Based upon an observation that most of the salient objects may stand out at least in one modality, this paper proposes an adaptive fusion scheme to fuse saliency predictions generated from two modalities. Specifically, we design a two-streamed convolutional neural network (CNN), each of which extracts features and predicts a saliency map from either RGB or depth modality. Then, a saliency fusion module learns a switch map that is used to adaptively fuse the predicted saliency maps. A loss function composed of saliency supervision, switch map supervision, and edge-preserving constraints is designed to make full supervision, and the entire network is trained in an end-to-end manner. Benefited from the adaptive fusion strategy and the edge-preserving constraint, our approach outperforms state-of-the-art methods on three publicly available datasets.