Abstract:Voice anonymization techniques have been found to successfully obscure a speaker's acoustic identity in short, isolated utterances in benchmarks such as the VoicePrivacy Challenge. In practice, however, utterances seldom occur in isolation: long-form audio is commonplace in domains such as interviews, phone calls, and meetings. In these cases, many utterances from the same speaker are available, which pose a significantly greater privacy risk: given multiple utterances from the same speaker, an attacker could exploit an individual's vocabulary, syntax, and turns of phrase to re-identify them, even when their voice is completely disguised. To address this risk, we propose new content anonymization approaches. Our approach performs a contextual rewriting of the transcripts in an ASR-TTS pipeline to eliminate speaker-specific style while preserving meaning. We present results in a long-form telephone conversation setting demonstrating the effectiveness of a content-based attack on voice-anonymized speech. Then we show how the proposed content-based anonymization methods can mitigate this risk while preserving speech utility. Overall, we find that paraphrasing is an effective defense against content-based attacks and recommend that stakeholders adopt this step to ensure anonymity in long-form audio.
Abstract:Financial news plays a critical role in the information diffusion process in financial markets and is a known driver of stock prices. However, the information in each news article is not necessarily self-contained, often requiring a broader understanding of the historical news coverage for accurate interpretation. Further, identifying and incorporating the most relevant contextual information presents significant challenges. In this work, we explore the value of historical context in the ability of large language models to understand the market impact of financial news. We find that historical context provides a consistent and significant improvement in performance across methods and time horizons. To this end, we propose an efficient and effective contextualization method that uses a large LM to process the main article, while a small LM encodes the historical context into concise summary embeddings that are then aligned with the large model's representation space. We explore the behavior of the model through multiple qualitative and quantitative interpretability tests and reveal insights into the value of contextualization. Finally, we demonstrate that the value of historical context in model predictions has real-world applications, translating to substantial improvements in simulated investment performance.
Abstract:We tackle the challenge of scaling accented TTS systems, expanding their capabilities to include much larger amounts of training data and a wider variety of accent labels, even for accents that are poorly represented or unlabeled in traditional TTS datasets. To achieve this, we employ two strategies: 1. Accent label discovery via a speech geolocation model, which automatically infers accent labels from raw speech data without relying solely on human annotation; 2. Timbre augmentation through kNN voice conversion to increase data diversity and model robustness. These strategies are validated on CommonVoice, where we fine-tune XTTS-v2 for accented TTS with accent labels discovered or enhanced using geolocation. We demonstrate that the resulting accented TTS model not only outperforms XTTS-v2 fine-tuned on self-reported accent labels in CommonVoice, but also existing accented TTS benchmarks.
Abstract:Recent studies have shown LLMs possess some ability to improve their responses when given external feedback. However, it remains unclear how effectively and thoroughly these models can incorporate extrinsic feedback. In an ideal scenario, if LLMs receive near-perfect and complete feedback, we would expect them to fully integrate the feedback and change their incorrect answers to correct ones. In this paper, we systematically investigate LLMs' ability to incorporate feedback by designing a controlled experimental environment. For each problem, a solver model attempts a solution, then a feedback generator with access to near-complete ground-truth answers produces targeted feedback, after which the solver tries again. We evaluate this pipeline across a diverse range of tasks, including math reasoning, knowledge reasoning, scientific reasoning, and general multi-domain evaluations with state-of-the-art language models including Claude 3.7 (with and without extended thinking). Surprisingly, even under these near-ideal conditions, solver models consistently show resistance to feedback, a limitation that we term FEEDBACK FRICTION. To mitigate this limitation, we experiment with sampling-based strategies like progressive temperature increases and explicit rejection of previously attempted incorrect answers, which yield improvements but still fail to help models achieve target performance. We also perform a rigorous exploration of potential causes of FEEDBACK FRICTION, ruling out factors such as model overconfidence and data familiarity. We hope that highlighting this issue in LLMs and ruling out several apparent causes will help future research in self-improvement.
Abstract:Most successful applications of deep learning involve similar training and test conditions. However, tasks such as biological sequence design involve searching for sequences that improve desirable properties beyond previously known values, which requires novel hypotheses that \emph{extrapolate} beyond training data. In these settings, extrapolation may be achieved by using random search methods such as Markov chain Monte Carlo (MCMC), which, given an initial state, sample local transformations to approximate a target density that rewards states with the desired properties. However, even with a well-designed proposal, MCMC may struggle to explore large structured state spaces efficiently. Rather than relying on stochastic search, it would be desirable to have a model that greedily optimizes the properties of interest, successfully extrapolating in as few steps as possible. We propose to learn such a model from the Markov chains resulting from MCMC search. Specifically, our approach uses selected states from Markov chains as a source of training data for an autoregressive model, which is then able to efficiently generate novel sequences that extrapolate along the sequence-level properties of interest. The proposed approach is validated on three problems: protein sequence design, text sentiment control, and text anonymization. We find that the autoregressive model can extrapolate as well or better than MCMC, but with the additional benefits of scalability and significantly higher sample efficiency.
Abstract:Despite considerable progress in the development of machine-text detectors, it has been suggested that the problem is inherently hard, and therefore, that stakeholders should proceed under the assumption that machine-generated text cannot be reliably detected as such. We examine a recent such claim by Nicks et al. (2024) regarding the ease with which language models can be optimized to degrade the performance of machine-text detectors, including detectors not specifically optimized against. We identify a feature space$\unicode{x2013}$the stylistic feature space$\unicode{x2013}$that is robust to such optimization, and show that it may be used to reliably detect samples from language models optimized to prevent detection. Furthermore, we show that even when models are explicitly optimized against stylistic detectors, detection performance remains surprisingly unaffected. We then seek to understand if stylistic detectors are inherently more robust. To study this question, we explore a new paraphrasing approach that simultaneously aims to close the gap between human writing and machine writing in stylistic feature space while avoiding detection using traditional features. We show that when only a single sample is available for detection, this attack is universally effective across all detectors considered, including those that use writing style. However, as the number of samples available for detection grows, the human and machine distributions become distinguishable. This observation encourages us to introduce AURA, a metric that estimates the overlap between human and machine-generated distributions by analyzing how detector performance improves as more samples become available. Overall, our findings underscore previous recommendations to avoid reliance on machine-text detection.
Abstract:As large language models (LLMs) are increasingly used for factual question-answering, it becomes more important for LLMs to have the capability to communicate the likelihood that their answer is correct. For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence. However, when prompted to express confidence, the error rates of current LLMs are inconsistent with their communicated confidences, highlighting the need for uncertainty quantification methods. Many prior methods calculate lexical uncertainty, estimating a model's confidence in the specific string it generated. In some cases, however, it may be more useful to estimate semantic uncertainty, or the model's confidence in the answer regardless of how it is verbalized. We propose a simple procedure, uncertainty distillation, to teach an LLM to verbalize calibrated semantic confidences. Using held-out data to map initial uncertainty estimates to meaningful probabilities, we create examples annotated with verbalized probabilities for supervised fine-tuning. We demonstrate our method yields verbalized confidences that correlate with observed error rates with a small fine-tuned language model as well as with larger instruction-tuned models, and find that our semantic uncertainty correlates well with lexical uncertainty on short answers.
Abstract:Driven by advances in self-supervised learning for speech, state-of-the-art synthetic speech detectors have achieved low error rates on popular benchmarks such as ASVspoof. However, prior benchmarks do not address the wide range of real-world variability in speech. Are reported error rates realistic in real-world conditions? To assess detector failure modes and robustness under controlled distribution shifts, we introduce ShiftySpeech, a benchmark with more than 3000 hours of synthetic speech from 7 domains, 6 TTS systems, 12 vocoders, and 3 languages. We found that all distribution shifts degraded model performance, and contrary to prior findings, training on more vocoders, speakers, or with data augmentation did not guarantee better generalization. In fact, we found that training on less diverse data resulted in better generalization, and that a detector fit using samples from a single carefully selected vocoder and a single speaker achieved state-of-the-art results on the challenging In-the-Wild benchmark.
Abstract:Zero-shot voice conversion has recently made substantial progress, but many models still depend on external supervised systems to disentangle speaker identity and linguistic content. Furthermore, current methods often use parallel conversion, where the converted speech inherits the source utterance's temporal structure, restricting speaker similarity and privacy. To overcome these limitations, we introduce GenVC, a generative zero-shot voice conversion model. GenVC learns to disentangle linguistic content and speaker style in a self-supervised manner, eliminating the need for external models and enabling efficient training on large, unlabeled datasets. Experimental results show that GenVC achieves state-of-the-art speaker similarity while maintaining naturalness competitive with leading approaches. Its autoregressive generation also allows the converted speech to deviate from the source utterance's temporal structure. This feature makes GenVC highly effective for voice anonymization, as it minimizes the preservation of source prosody and speaker characteristics, enhancing privacy protection.
Abstract:Large language models can produce highly fluent paraphrases while retaining much of the original meaning. While this capability has a variety of helpful applications, it may also be abused by bad actors, for example to plagiarize content or to conceal their identity. This motivates us to consider the problem of paraphrase inversion: given a paraphrased document, attempt to recover the original text. To explore the feasibility of this task, we fine-tune paraphrase inversion models, both with and without additional author-specific context to help guide the inversion process. We explore two approaches to author-specific inversion: one using in-context examples of the target author's writing, and another using learned style representations that capture distinctive features of the author's style. We show that, when starting from paraphrased machine-generated text, we can recover significant portions of the document using a learned inversion model. When starting from human-written text, the variety of source writing styles poses a greater challenge for invertability. However, even when the original tokens can't be recovered, we find the inverted text is stylistically similar to the original, which significantly improves the performance of plagiarism detectors and authorship identification systems that rely on stylistic markers.