Abstract:We present ESPnet-ST, which is designed for the quick development of speech-to-speech translation systems in a single framework. ESPnet-ST is a new project inside end-to-end speech processing toolkit, ESPnet, which integrates or newly implements automatic speech recognition, machine translation, and text-to-speech functions for speech translation. We provide all-in-one recipes including data pre-processing, feature extraction, training, and decoding pipelines for a wide range of benchmark datasets. Our reproducible results can match or even outperform the current state-of-the-art performances; these pre-trained models are downloadable. The toolkit is publicly available at https://github.com/espnet/espnet.
Abstract:Sequence-to-sequence models have been widely used in end-to-end speech processing, for example, automatic speech recognition (ASR), speech translation (ST), and text-to-speech (TTS). This paper focuses on an emergent sequence-to-sequence model called Transformer, which achieves state-of-the-art performance in neural machine translation and other natural language processing applications. We undertook intensive studies in which we experimentally compared and analyzed Transformer and conventional recurrent neural networks (RNN) in a total of 15 ASR, one multilingual ASR, one ST, and two TTS benchmarks. Our experiments revealed various training tips and significant performance benefits obtained with Transformer for each task including the surprising superiority of Transformer in 13/15 ASR benchmarks in comparison with RNN. We are preparing to release Kaldi-style reproducible recipes using open source and publicly available datasets for all the ASR, ST, and TTS tasks for the community to succeed our exciting outcomes.
Abstract:This paper introduces a new open source platform for end-to-end speech processing named ESPnet. ESPnet mainly focuses on end-to-end automatic speech recognition (ASR), and adopts widely-used dynamic neural network toolkits, Chainer and PyTorch, as a main deep learning engine. ESPnet also follows the Kaldi ASR toolkit style for data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. This paper explains a major architecture of this software platform, several important functionalities, which differentiate ESPnet from other open source ASR toolkits, and experimental results with major ASR benchmarks.