JAIST, RIKEN
Abstract:Vision Large Language Models (VLLMs) usually take input as a concatenation of image token embeddings and text token embeddings and conduct causal modeling. However, their internal behaviors remain underexplored, raising the question of interaction among two types of tokens. To investigate such multimodal interaction during model inference, in this paper, we measure the contextualization among the hidden state vectors of tokens from different modalities. Our experiments uncover a four-phase inference dynamics of VLLMs against the depth of Transformer-based LMs, including (I) Alignment: In very early layers, contextualization emerges between modalities, suggesting a feature space alignment. (II) Intra-modal Encoding: In early layers, intra-modal contextualization is enhanced while inter-modal interaction is suppressed, suggesting a local encoding within modalities. (III) Inter-modal Encoding: In later layers, contextualization across modalities is enhanced, suggesting a deeper fusion across modalities. (IV) Output Preparation: In very late layers, contextualization is reduced globally, and hidden states are aligned towards the unembedding space.
Abstract:In-context Learning (ICL) is an emerging few-shot learning paradigm on Language Models (LMs) with inner mechanisms un-explored. There are already existing works describing the inner processing of ICL, while they struggle to capture all the inference phenomena in large language models. Therefore, this paper proposes a comprehensive circuit to model the inference dynamics and try to explain the observed phenomena of ICL. In detail, we divide ICL inference into 3 major operations: (1) Summarize: LMs encode every input text (demonstrations and queries) into linear representation in the hidden states with sufficient information to solve ICL tasks. (2) Semantics Merge: LMs merge the encoded representations of demonstrations with their corresponding label tokens to produce joint representations of labels and demonstrations. (3) Feature Retrieval and Copy: LMs search the joint representations similar to the query representation on a task subspace, and copy the searched representations into the query. Then, language model heads capture these copied label representations to a certain extent and decode them into predicted labels. The proposed inference circuit successfully captured many phenomena observed during the ICL process, making it a comprehensive and practical explanation of the ICL inference process. Moreover, ablation analysis by disabling the proposed steps seriously damages the ICL performance, suggesting the proposed inference circuit is a dominating mechanism. Additionally, we confirm and list some bypass mechanisms that solve ICL tasks in parallel with the proposed circuit.
Abstract:Representation Misdirection for Unlearning (RMU), which steers model representation in the intermediate layer to a target random representation, is an effective method for large language model (LLM) unlearning. Despite its high performance, the underlying cause and explanation remain underexplored. In this paper, we first theoretically demonstrate that steering forget representations in the intermediate layer reduces token confidence, causing LLMs to generate wrong or nonsense responses. Second, we investigate how the coefficient influences the alignment of forget-sample representations with the random direction and hint at the optimal coefficient values for effective unlearning across different network layers. Third, we show that RMU unlearned models are robust against adversarial jailbreak attacks. Last, our empirical analysis shows that RMU is less effective when applied to the middle and later layers in LLMs. To resolve this drawback, we propose Adaptive RMU -- a simple yet effective alternative method that makes unlearning effective with most layers. Extensive experiments demonstrate that Adaptive RMU significantly improves the unlearning performance compared to prior art while incurring no additional computational cost.
Abstract:In-Context Learning (ICL) typically utilizes classification criteria from probabilities of manually selected label tokens. However, we argue that such token-based classification criteria lead to suboptimal decision boundaries, despite delicate calibrations through translation and constrained rotation. To address this problem, we propose Hidden Calibration, which renounces token probabilities and uses the nearest centroid classifier on the LM's last hidden states. In detail, we use the nearest centroid classification on the hidden states, assigning the category of the nearest centroid previously observed from a few-shot calibration set to the test sample as the predicted label. Our experiments on 3 models and 10 classification datasets indicate that Hidden Calibration consistently outperforms current token-based calibrations by about 20%. Our further analysis demonstrates that Hidden Calibration finds better classification criteria with less inter-categories overlap, and LMs provide linearly separable intra-category clusters with the help of demonstrations, which supports Hidden Calibration and gives new insights into the conventional ICL.
Abstract:Prior research in computational argumentation has mainly focused on scoring the quality of arguments, with less attention on explicating logical errors. In this work, we introduce four sets of explainable templates for common informal logical fallacies designed to explicate a fallacy's implicit logic. Using our templates, we conduct an annotation study on top of 400 fallacious arguments taken from LOGIC dataset and achieve a high agreement score (Krippendorf's alpha of 0.54) and reasonable coverage (0.83). Finally, we conduct an experiment for detecting the structure of fallacies and discover that state-of-the-art language models struggle with detecting fallacy templates (0.47 accuracy). To facilitate research on fallacies, we make our dataset and guidelines publicly available.
Abstract:In this paper, we investigate the output token probability information in the output embedding of language models. We provide an approximate common log-linear encoding of output token probabilities within the output embedding vectors and demonstrate that it is accurate and sparse when the output space is large and output logits are concentrated. Based on such findings, we edit the encoding in output embedding to modify the output probability distribution accurately. Moreover, the sparsity we find in output probability encoding suggests that a large number of dimensions in the output embedding do not contribute to causal language modeling. Therefore, we attempt to delete the output-unrelated dimensions and find more than 30% of the dimensions can be deleted without significant movement in output distribution and degeneration on sequence generation. Additionally, in training dynamics, we use such encoding as a probe and find that the output embeddings capture token frequency information in early steps, even before an obvious convergence starts.
Abstract:In-Context Learning (ICL) is suffering from unsatisfactory performance and under-calibration due to high prior bias and unfaithful confidence. Some previous works fine-tuned language models for better ICL performance with enormous datasets and computing costs. In this paper, we propose NoisyICL, simply perturbing the model parameters by random noises to strive for better performance and calibration. Our experiments on two models and 12 downstream datasets show that NoisyICL can help ICL produce more accurate predictions. Our further analysis indicates that NoisyICL enables the model to provide more fair predictions, and also with more faithful confidence. Therefore, we believe that NoisyICL is an effective calibration of ICL. Our experimental code is uploaded to Github.
Abstract:Shortcut reasoning is an irrational process of inference, which degrades the robustness of an NLP model. While a number of previous work has tackled the identification of shortcut reasoning, there are still two major limitations: (i) a method for quantifying the severity of the discovered shortcut reasoning is not provided; (ii) certain types of shortcut reasoning may be missed. To address these issues, we propose a novel method for identifying shortcut reasoning. The proposed method quantifies the severity of the shortcut reasoning by leveraging out-of-distribution data and does not make any assumptions about the type of tokens triggering the shortcut reasoning. Our experiments on Natural Language Inference and Sentiment Analysis demonstrate that our framework successfully discovers known and unknown shortcut reasoning in the previous work.
Abstract:The use of argumentation in education has been shown to improve critical thinking skills for end-users such as students, and computational models for argumentation have been developed to assist in this process. Although these models are useful for evaluating the quality of an argument, they oftentimes cannot explain why a particular argument is considered poor or not, which makes it difficult to provide constructive feedback to users to strengthen their critical thinking skills. In this survey, we aim to explore the different dimensions of feedback (Richness, Visualization, Interactivity, and Personalization) provided by the current computational models for argumentation, and the possibility of enhancing the power of explanations of such models, ultimately helping learners improve their critical thinking skills.
Abstract:Geoparsing is a fundamental technique for analyzing geo-entity information in text. We focus on document-level geoparsing, which considers geographic relatedness among geo-entity mentions, and presents a Japanese travelogue dataset designed for evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.