Abstract:Alternative Texts (Alt-Text) for chart images are essential for making graphics accessible to people with blindness and visual impairments. Traditionally, Alt-Text is manually written by authors but often encounters issues such as oversimplification or complication. Recent trends have seen the use of AI for Alt-Text generation. However, existing models are susceptible to producing inaccurate or misleading information. We address this challenge by retrieving high-quality alt-texts from similar chart images, serving as a reference for the user when creating alt-texts. Our three contributions are as follows: (1) we introduce a new benchmark comprising 5,000 real images with semantically labeled high-quality Alt-Texts, collected from Human Computer Interaction venues. (2) We developed a deep learning-based model to rank and retrieve similar chart images that share the same visual and textual semantics. (3) We designed a user interface (UI) to facilitate the alt-text creation process. Our preliminary interviews and investigations highlight the usability of our UI. For the dataset and further details, please refer to our project page: https://moured.github.io/alt4blind/.
Abstract:Automatic localization of text-lines in handwritten documents is still an open and challenging research problem. Various writing issues such as uneven spacing between the lines, oscillating and touching text, and the presence of skew become much more challenging when the case of complex handwritten document images are considered for segmentation directly in their respective compressed representation. This is because, the conventional way of processing compressed documents is through decompression, but here in this paper, we propose an idea that employs deep feature learning directly from the JPEG compressed coefficients without full decompression to accomplish text-line localization in the JPEG compressed domain. A modified U-Net architecture known as Compressed Text-Line Localization Network (CompTLL-UNet) is designed to accomplish it. The model is trained and tested with JPEG compressed version of benchmark datasets including ICDAR2017 (cBAD) and ICDAR2019 (cBAD), reporting the state-of-the-art performance with reduced storage and computational costs in the JPEG compressed domain.
Abstract:The problem of change detection in images finds application in different domains like diagnosis of diseases in the medical field, detecting growth patterns of cities through remote sensing, and finding changes in legal documents and contracts. However, this paper presents a survey on core techniques and rules to detect changes in different versions of a document image. Our discussions on change detection focus on two categories -- content-based and layout-based. The content-based techniques intelligently extract and analyze the image contents (text or non-text) to show the possible differences, whereas the layout-based techniques use structural information to predict document changes. We also summarize the existing datasets and evaluation metrics used in change detection experiments. The shortcomings and challenges the existing methods face are reported, along with some pointers for future research work.
Abstract:Figures visually represent an essential piece of information and provide an effective means to communicate scientific facts. Recently there have been many efforts toward extracting data directly from figures, specifically from tables, diagrams, and plots, using different Artificial Intelligence and Machine Learning techniques. This is because removing information from figures could lead to deeper insights into the concepts highlighted in the scientific documents. In this survey paper, we systematically categorize figures into five classes - tables, photos, diagrams, maps, and plots, and subsequently present a critical review of the existing methodologies and data sets that address the problem of figure classification. Finally, we identify the current research gaps and provide possible directions for further research on figure classification.
Abstract:Charts represent an essential source of visual information in documents and facilitate a deep understanding and interpretation of information typically conveyed numerically. In the scientific literature, there are many charts, each with its stylistic differences. Recently the document understanding community has begun to address the problem of automatic chart understanding, which begins with chart classification. In this paper, we present a survey of the current state-of-the-art techniques for chart classification and discuss the available datasets and their supported chart types. We broadly classify these contributions as traditional approaches based on ML, CNN, and Transformers. Furthermore, we carry out an extensive comparative performance analysis of CNN-based and transformer-based approaches on the recently published CHARTINFO UB-UNITECH PMC dataset for the CHART-Infographics competition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
Abstract:For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.
Abstract:The problem of generating textual descriptions for the visual data has gained research attention in the recent years. In contrast to that the problem of generating visual data from textual descriptions is still very challenging, because it requires the combination of both Natural Language Processing (NLP) and Computer Vision techniques. The existing methods utilize the Generative Adversarial Networks (GANs) and generate the uncompressed images from textual description. However, in practice, most of the visual data are processed and transmitted in the compressed representation. Hence, the proposed work attempts to generate the visual data directly in the compressed representation form using Deep Convolutional GANs (DCGANs) to achieve the storage and computational efficiency. We propose GAN models for compressed image generation from text. The first model is directly trained with JPEG compressed DCT images (compressed domain) to generate the compressed images from text descriptions. The second model is trained with RGB images (pixel domain) to generate JPEG compressed DCT representation from text descriptions. The proposed models are tested on an open source benchmark dataset Oxford-102 Flower images using both RGB and JPEG compressed versions, and accomplished the state-of-the-art performance in the JPEG compressed domain. The code will be publicly released at GitHub after acceptance of paper.
Abstract:Image binarization techniques are being popularly used in enhancement of noisy and/or degraded images catering different Document Image Anlaysis (DIA) applications like word spotting, document retrieval, and OCR. Most of the existing techniques focus on feeding pixel images into the Convolution Neural Networks to accomplish document binarization, which may not produce effective results when working with compressed images that need to be processed without full decompression. Therefore in this research paper, the idea of document image binarization directly using JPEG compressed stream of document images is proposed by employing Dual Discriminator Generative Adversarial Networks (DD-GANs). Here the two discriminator networks - Global and Local work on different image ratios and use focal loss as generator loss. The proposed model has been thoroughly tested with different versions of DIBCO dataset having challenges like holes, erased or smudged ink, dust, and misplaced fibres. The model proved to be highly robust, efficient both in terms of time and space complexities, and also resulted in state-of-the-art performance in JPEG compressed domain.
Abstract:In today's technological era, document images play an important and integral part in our day to day life, and specifically with the surge of Covid-19, digitally scanned documents have become key source of communication, thus avoiding any sort of infection through physical contact. Storage and transmission of scanned document images is a very memory intensive task, hence compression techniques are being used to reduce the image size before archival and transmission. To extract information or to operate on the compressed images, we have two ways of doing it. The first way is to decompress the image and operate on it and subsequently compress it again for the efficiency of storage and transmission. The other way is to use the characteristics of the underlying compression algorithm to directly process the images in their compressed form without involving decompression and re-compression. In this paper, we propose a novel idea of developing an OCR for CCITT (The International Telegraph and Telephone Consultative Committee) compressed machine printed TIFF document images directly in the compressed domain. After segmenting text regions into lines and words, HMM is applied for recognition using three coding modes of CCITT- horizontal, vertical and the pass mode. Experimental results show that OCR on pass modes give a promising results.
Abstract:The handwritten word recognition from images using deep learning is an active research area with promising performance. It practical scenario, it might be required to process the handwritten images in the compressed domain due to due to security reasons. However, the utilization of deep learning is still very limited for the processing of compressed images. Motivated by the need of processing document images in the compressed domain using recent developments in deep learning, we propose a HWRCNet model for handwritten word recognition in JPEG compressed domain. The proposed model combines the Convolutional Neural Network (CNN) and Bi-Directional Long Short Term Memory (BiLSTM) based Recurrent Neural Network (RNN). Basically, we train the model using compressed domain images and observe a very appealing performance with 89.05% word recognition accuracy and 13.37% character error rate.