Abstract:In recent years, the challenge of 3D shape analysis within point cloud data has gathered significant attention in computer vision. Addressing the complexities of effective 3D information representation and meaningful feature extraction for classification tasks remains crucial. This paper presents Point-GR, a novel deep learning architecture designed explicitly to transform unordered raw point clouds into higher dimensions while preserving local geometric features. It introduces residual-based learning within the network to mitigate the point permutation issues in point cloud data. The proposed Point-GR network significantly reduced the number of network parameters in Classification and Part-Segmentation compared to baseline graph-based networks. Notably, the Point-GR model achieves a state-of-the-art scene segmentation mean IoU of 73.47% on the S3DIS benchmark dataset, showcasing its effectiveness. Furthermore, the model shows competitive results in Classification and Part-Segmentation tasks.
Abstract:In this paper, we present new feature encoding methods for Detection of 3D objects in point clouds. We used a graph neural network (GNN) for Detection of 3D objects namely cars, pedestrians, and cyclists. Feature encoding is one of the important steps in Detection of 3D objects. The dataset used is point cloud data which is irregular and unstructured and it needs to be encoded in such a way that ensures better feature encapsulation. Earlier works have used relative distance as one of the methods to encode the features. These methods are not resistant to rotation variance problems in Graph Neural Networks. We have included angular-based measures while performing feature encoding in graph neural networks. Along with that, we have performed a comparison between other methods like Absolute, Relative, Euclidean distances, and a combination of the Angle and Relative methods. The model is trained and evaluated on the subset of the KITTI object detection benchmark dataset under resource constraints. Our results demonstrate that a combination of angle measures and relative distance has performed better than other methods. In comparison to the baseline method(relative), it achieved better performance. We also performed time analysis of various feature encoding methods.