Abstract:Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. Each document is assigned to an actor, modeled as a ReACT agent, which performs structured edits based on document-specific targeted instructions from a centralized critic. Experimental results show that STACKFEED significantly improves KB quality and RAG system performance, enhancing accuracy by up to 8% over baselines.
Abstract:In this paper we examine the limitations of Large Language Models (LLMs) for complex reasoning tasks. Although recent works have started to employ formal languages as an intermediate representation for reasoning tasks, they often face challenges in accurately generating and refining these formal specifications to ensure correctness. To address these issues, this paper proposes Logic-LM++, an improvement on Logic-LM . It uses the ability of LLMs to do pairwise comparisons, allowing the evaluation of the refinements suggested by the LLM. The paper demonstrates that Logic-LM++ outperforms Logic-LM and other contemporary techniques across natural language reasoning tasks on three datasets, FOLIO, ProofWriter and AR-LSAT, with an average improvement of 18.5% on standard prompting, 12.3% on chain of thought prompting and 5% on Logic-LM.
Abstract:For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.