Abstract:Charts represent an essential source of visual information in documents and facilitate a deep understanding and interpretation of information typically conveyed numerically. In the scientific literature, there are many charts, each with its stylistic differences. Recently the document understanding community has begun to address the problem of automatic chart understanding, which begins with chart classification. In this paper, we present a survey of the current state-of-the-art techniques for chart classification and discuss the available datasets and their supported chart types. We broadly classify these contributions as traditional approaches based on ML, CNN, and Transformers. Furthermore, we carry out an extensive comparative performance analysis of CNN-based and transformer-based approaches on the recently published CHARTINFO UB-UNITECH PMC dataset for the CHART-Infographics competition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.
Abstract:Figures visually represent an essential piece of information and provide an effective means to communicate scientific facts. Recently there have been many efforts toward extracting data directly from figures, specifically from tables, diagrams, and plots, using different Artificial Intelligence and Machine Learning techniques. This is because removing information from figures could lead to deeper insights into the concepts highlighted in the scientific documents. In this survey paper, we systematically categorize figures into five classes - tables, photos, diagrams, maps, and plots, and subsequently present a critical review of the existing methodologies and data sets that address the problem of figure classification. Finally, we identify the current research gaps and provide possible directions for further research on figure classification.