Abstract:Detection of tumors in metastatic colorectal cancer (mCRC) plays an essential role in the early diagnosis and treatment of liver cancer. Deep learning models backboned by fully convolutional neural networks (FCNNs) have become the dominant model for segmenting 3D computerized tomography (CT) scans. However, since their convolution layers suffer from limited kernel size, they are not able to capture long-range dependencies and global context. To tackle this restriction, vision transformers have been introduced to solve FCNN's locality of receptive fields. Although transformers can capture long-range features, their segmentation performance decreases with various tumor sizes due to the model sensitivity to the input patch size. While finding an optimal patch size improves the performance of vision transformer-based models on segmentation tasks, it is a time-consuming and challenging procedure. This paper proposes a technique to select the vision transformer's optimal input multi-resolution image patch size based on the average volume size of metastasis lesions. We further validated our suggested framework using a transfer-learning technique, demonstrating that the highest Dice similarity coefficient (DSC) performance was obtained by pre-training on training data with a larger tumour volume using the suggested ideal patch size and then training with a smaller one. We experimentally evaluate this idea through pre-training our model on a multi-resolution public dataset. Our model showed consistent and improved results when applied to our private multi-resolution mCRC dataset with a smaller average tumor volume. This study lays the groundwork for optimizing semantic segmentation of small objects using vision transformers. The implementation source code is available at:https://github.com/Ramtin-Mojtahedi/OVTPS.
Abstract:Small liver lesions common to colorectal liver metastases (CRLMs) are challenging for convolutional neural network (CNN) segmentation models, especially when we have a wide range of slice thicknesses in the computed tomography (CT) scans. Slice thickness of CT images may vary by clinical indication. For example, thinner slices are used for presurgical planning when fine anatomic details of small vessels are required. While keeping the effective radiation dose in patients as low as possible, various slice thicknesses are employed in CRLMs due to their limitations. However, differences in slice thickness across CTs lead to significant performance degradation in CT segmentation models based on CNNs. This paper proposes a novel unsupervised attention-based interpolation model to generate intermediate slices from consecutive triplet slices in CT scans. We integrate segmentation loss during the interpolation model's training to leverage segmentation labels in existing slices to generate middle ones. Unlike common interpolation techniques in CT volumes, our model highlights the regions of interest (liver and lesions) inside the abdominal CT scans in the interpolated slice. Moreover, our model's outputs are consistent with the original input slices while increasing the segmentation performance in two cutting-edge 3D segmentation pipelines. We tested the proposed model on the CRLM dataset to upsample subjects with thick slices and create isotropic volume for our segmentation model. The produced isotropic dataset increases the Dice score in the segmentation of lesions and outperforms other interpolation approaches in terms of interpolation metrics.
Abstract:Although machine learning (ML) has shown promise in numerous domains, there are concerns about generalizability to out-of-sample data. This is currently addressed by centrally sharing ample, and importantly diverse, data from multiple sites. However, such centralization is challenging to scale (or even not feasible) due to various limitations. Federated ML (FL) provides an alternative to train accurate and generalizable ML models, by only sharing numerical model updates. Here we present findings from the largest FL study to-date, involving data from 71 healthcare institutions across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, utilizing the largest dataset of such patients ever used in the literature (25,256 MRI scans from 6,314 patients). We demonstrate a 33% improvement over a publicly trained model to delineate the surgically targetable tumor, and 23% improvement over the tumor's entire extent. We anticipate our study to: 1) enable more studies in healthcare informed by large and diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further quantitative analyses for glioblastoma via performance optimization of our consensus model for eventual public release, and 3) demonstrate the effectiveness of FL at such scale and task complexity as a paradigm shift for multi-site collaborations, alleviating the need for data sharing.
Abstract:In large studies involving multi protocol Magnetic Resonance Imaging (MRI), it can occur to miss one or more sub-modalities for a given patient owing to poor quality (e.g. imaging artifacts), failed acquisitions, or hallway interrupted imaging examinations. In some cases, certain protocols are unavailable due to limited scan time or to retrospectively harmonise the imaging protocols of two independent studies. Missing image modalities pose a challenge to segmentation frameworks as complementary information contributed by the missing scans is then lost. In this paper, we propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan. MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations. Instead of designing one network for each possible subset of present sub-modalities or using frameworks to mix feature maps, missing data can be generated from a single model based on all the available samples. We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing. Our experiments against competitive segmentation baselines with missing sub-modality on BraTS'19 dataset indicate the effectiveness of the MGP-VAE model for segmentation tasks.
Abstract:Structural magnetic resonance imaging (MRI) has been widely utilized for analysis and diagnosis of brain diseases. Automatic segmentation of brain tumors is a challenging task for computer-aided diagnosis due to low-tissue contrast in the tumor subregions. To overcome this, we devise a novel pixel-wise segmentation framework through a convolutional 3D to 2D MR patch conversion model to predict class labels of the central pixel in the input sliding patches. Precisely, we first extract 3D patches from each modality to calibrate slices through the squeeze and excitation (SE) block. Then, the output of the SE block is fed directly into subsequent bottleneck layers to reduce the number of channels. Finally, the calibrated 2D slices are concatenated to obtain multimodal features through a 2D convolutional neural network (CNN) for prediction of the central pixel. In our architecture, both local inter-slice and global intra-slice features are jointly exploited to predict class label of the central voxel in a given patch through the 2D CNN classifier. We implicitly apply all modalities through trainable parameters to assign weights to the contributions of each sequence for segmentation. Experimental results on the segmentation of brain tumors in multimodal MRI scans (BraTS'19) demonstrate that our proposed method can efficiently segment the tumor regions.
Abstract:Magnetic resonance imaging (MRI) provides varying tissue contrast images of internal organs based on a strong magnetic field. Despite the non-invasive advantage of MRI in frequent imaging, the low contrast MR images in the target area make tissue segmentation a challenging problem. This paper demonstrates the potential benefits of image-to-image translation techniques to generate synthetic high tissue contrast (HTC) images. Notably, we adopt a new cycle generative adversarial network (CycleGAN) with an attention mechanism to increase the contrast within underlying tissues. The attention block, as well as training on HTC images, guides our model to converge on certain tissues. To increase the resolution of HTC images, we employ multi-stage architecture to focus on one particular tissue as a foreground and filter out the irrelevant background in each stage. This multi-stage structure also alleviates the common artifacts of the synthetic images by decreasing the gap between source and target domains. We show the application of our method for synthesizing HTC images on brain MR scans, including glioma tumor. We also employ HTC MR images in both the end-to-end and two-stage segmentation structure to confirm the effectiveness of these images. The experiments over three competitive segmentation baselines on BraTS 2018 dataset indicate that incorporating the synthetic HTC images in the multi-modal segmentation framework improves the average Dice scores 0.8%, 0.6%, and 0.5% on the whole tumor, tumor core, and enhancing tumor, respectively, while eliminating one real MRI sequence from the segmentation procedure.
Abstract:The magnetic resonance (MR) analysis of brain tumors is widely used for diagnosis and examination of tumor subregions. The overlapping area among the intensity distribution of healthy, enhancing, non-enhancing, and edema region makes the automatic segmentation a challenging task. Here, we show that a convolutional neural network trained on high-contrast images can transform intensity distribution of brain lesion in its internal subregions. Specifically, generative adversarial network (GAN) is extended to synthesize high-contrast images. A comparison of these synthetic images and real images of brain tumor tissue in MR scans showed significant segmentation improvement and decreased the number of real channels for segmentation. The synthetic images are used as a substitute for real channels and can bypass real modalities in the multimodal brain tumor segmentation framework. Segmentation results on BraTS 2019 dataset demonstrate that our proposed approach can efficiently segment the tumor areas.