Abstract:This paper presents the design and implementation of a Federated Learning (FL) testbed, focusing on its application in cybersecurity and evaluating its resilience against poisoning attacks. Federated Learning allows multiple clients to collaboratively train a global model while keeping their data decentralized, addressing critical needs for data privacy and security, particularly in sensitive fields like cybersecurity. Our testbed, built using the Flower framework, facilitates experimentation with various FL frameworks, assessing their performance, scalability, and ease of integration. Through a case study on federated intrusion detection systems, we demonstrate the testbed's capabilities in detecting anomalies and securing critical infrastructure without exposing sensitive network data. Comprehensive poisoning tests, targeting both model and data integrity, evaluate the system's robustness under adversarial conditions. Our results show that while federated learning enhances data privacy and distributed learning, it remains vulnerable to poisoning attacks, which must be mitigated to ensure its reliability in real-world applications.
Abstract:Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions. This survey reviews the progress in RS inclusively from 2017 to 2024, effectively connecting theoretical advances with practical applications. We explore the development from traditional RS techniques like content-based and collaborative filtering to advanced methods involving deep learning, graph-based models, reinforcement learning, and large language models. We also discuss specialized systems such as context-aware, review-based, and fairness-aware RS. The primary goal of this survey is to bridge theory with practice. It addresses challenges across various sectors, including e-commerce, healthcare, and finance, emphasizing the need for scalable, real-time, and trustworthy solutions. Through this survey, we promote stronger partnerships between academic research and industry practices. The insights offered by this survey aim to guide industry professionals in optimizing RS deployment and to inspire future research directions, especially in addressing emerging technological and societal trends
Abstract:Large Language Models (LLMs) have recently gained significant attention due to their remarkable capabilities in performing diverse tasks across various domains. However, a thorough evaluation of these models is crucial before deploying them in real-world applications to ensure they produce reliable performance. Despite the well-established importance of evaluating LLMs in the community, the complexity of the evaluation process has led to varied evaluation setups, causing inconsistencies in findings and interpretations. To address this, we systematically review the primary challenges and limitations causing these inconsistencies and unreliable evaluations in various steps of LLM evaluation. Based on our critical review, we present our perspectives and recommendations to ensure LLM evaluations are reproducible, reliable, and robust.
Abstract:Recent improvements in large language models (LLMs) have significantly enhanced natural language processing (NLP) applications. However, these models can also inherit and perpetuate biases from their training data. Addressing this issue is crucial, yet many existing datasets do not offer evaluation across diverse NLP tasks. To tackle this, we introduce the Bias Evaluations Across Domains (BEADs) dataset, designed to support a wide range of NLP tasks, including text classification, bias entity recognition, bias quantification, and benign language generation. BEADs uses AI-driven annotation combined with experts' verification to provide reliable labels. This method overcomes the limitations of existing datasets that typically depend on crowd-sourcing, expert-only annotations with limited bias evaluations, or unverified AI labeling. Our empirical analysis shows that BEADs is effective in detecting and reducing biases across different language models, with smaller models fine-tuned on BEADs often outperforming LLMs in bias classification tasks. However, these models may still exhibit biases towards certain demographics. Fine-tuning LLMs with our benign language data also reduces biases while preserving the models' knowledge. Our findings highlight the importance of comprehensive bias evaluation and the potential of targeted fine-tuning for reducing the bias of LLMs. We are making BEADs publicly available at https://huggingface.co/datasets/shainar/BEAD Warning: This paper contains examples that may be considered offensive.
Abstract:Recommender systems play a pivotal role in helping users navigate an overwhelming selection of products and services. On online platforms, users have the opportunity to share feedback in various modes, including numerical ratings, textual reviews, and likes/dislikes. Traditional recommendation systems rely on users explicit ratings or implicit interactions (e.g. likes, clicks, shares, saves) to learn user preferences and item characteristics. Beyond these numerical ratings, textual reviews provide insights into users fine-grained preferences and item features. Analyzing these reviews is crucial for enhancing the performance and interpretability of personalized recommendation results. In recent years, review-based recommender systems have emerged as a significant sub-field in this domain. In this paper, we provide a comprehensive overview of the developments in review-based recommender systems over recent years, highlighting the importance of reviews in recommender systems, as well as the challenges associated with extracting features from reviews and integrating them into ratings. Specifically, we present a categorization of these systems and summarize the state-of-the-art methods, analyzing their unique features, effectiveness, and limitations. Finally, we propose potential directions for future research, including the integration of multi-modal data, multi-criteria rating information, and ethical considerations.
Abstract:In today's technologically driven world, the rapid spread of fake news, particularly during critical events like elections, poses a growing threat to the integrity of information. To tackle this challenge head-on, we introduce FakeWatch, a comprehensive framework carefully designed to detect fake news. Leveraging a newly curated dataset of North American election-related news articles, we construct robust classification models. Our framework integrates a model hub comprising of both traditional machine learning (ML) techniques and cutting-edge Language Models (LMs) to discern fake news effectively. Our overarching objective is to provide the research community with adaptable and precise classification models adept at identifying the ever-evolving landscape of misinformation. Quantitative evaluations of fake news classifiers on our dataset reveal that, while state-of-the-art LMs exhibit a slight edge over traditional ML models, classical models remain competitive due to their balance of accuracy and computational efficiency. Additionally, qualitative analyses shed light on patterns within fake news articles. This research lays the groundwork for future endeavors aimed at combating misinformation, particularly concerning electoral processes. We provide our labeled data and model publicly for use and reproducibility.
Abstract:In this paper, we validate the performance of the a sensor fusion-based Global Navigation Satellite System (GNSS) spoofing attack detection framework for Autonomous Vehicles (AVs). To collect data, a vehicle equipped with a GNSS receiver, along with Inertial Measurement Unit (IMU) is used. The detection framework incorporates two strategies: The first strategy involves comparing the predicted location shift, which is the distance traveled between two consecutive timestamps, with the inertial sensor-based location shift. For this purpose, data from low-cost in-vehicle inertial sensors such as the accelerometer and gyroscope sensor are fused and fed into a long short-term memory (LSTM) neural network. The second strategy employs a Random-Forest supervised machine learning model to detect and classify turns, distinguishing between left and right turns using the output from the steering angle sensor. In experiments, two types of spoofing attack models: turn-by-turn and wrong turn are simulated. These spoofing attacks are modeled as SQL injection attacks, where, upon successful implementation, the navigation system perceives injected spoofed location information as legitimate while being unable to detect legitimate GNSS signals. Importantly, the IMU data remains uncompromised throughout the spoofing attack. To test the effectiveness of the detection framework, experiments are conducted in Tuscaloosa, AL, mimicking urban road structures. The results demonstrate the framework's ability to detect various sophisticated GNSS spoofing attacks, even including slow position drifting attacks. Overall, the experimental results showcase the robustness and efficacy of the sensor fusion-based spoofing attack detection approach in safeguarding AVs against GNSS spoofing threats.
Abstract:This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
Abstract:In today's technologically driven world, the spread of fake news, particularly during crucial events such as elections, presents an increasing challenge to the integrity of information. To address this challenge, we introduce FakeWatch ElectionShield, an innovative framework carefully designed to detect fake news. We have created a novel dataset of North American election-related news articles through a blend of advanced language models (LMs) and thorough human verification, for precision and relevance. We propose a model hub of LMs for identifying fake news. Our goal is to provide the research community with adaptable and accurate classification models in recognizing the dynamic nature of misinformation. Extensive evaluation of fake news classifiers on our dataset and a benchmark dataset shows our that while state-of-the-art LMs slightly outperform the traditional ML models, classical models are still competitive with their balance of accuracy, explainability, and computational efficiency. This research sets the foundation for future studies to address misinformation related to elections.
Abstract:The development of large language models (LLMs) such as ChatGPT has brought a lot of attention recently. However, their evaluation in the benchmark academic datasets remains under-explored due to the difficulty of evaluating the generative outputs produced by this model against the ground truth. In this paper, we aim to present a thorough evaluation of ChatGPT's performance on diverse academic datasets, covering tasks like question-answering, text summarization, code generation, commonsense reasoning, mathematical problem-solving, machine translation, bias detection, and ethical considerations. Specifically, we evaluate ChatGPT across 140 tasks and analyze 255K responses it generates in these datasets. This makes our work the largest evaluation of ChatGPT in NLP benchmarks. In short, our study aims to validate the strengths and weaknesses of ChatGPT in various tasks and provide insights for future research using LLMs. We also report a new emergent ability to follow multi-query instructions that we mostly found in ChatGPT and other instruction-tuned models. Our extensive evaluation shows that even though ChatGPT is capable of performing a wide variety of tasks, and may obtain impressive performance in several benchmark datasets, it is still far from achieving the ability to reliably solve many challenging tasks. By providing a thorough assessment of ChatGPT's performance across diverse NLP tasks, this paper sets the stage for a targeted deployment of ChatGPT-like LLMs in real-world applications.