Abstract:Recommender Systems (RS) play an integral role in enhancing user experiences by providing personalized item suggestions. This survey reviews the progress in RS inclusively from 2017 to 2024, effectively connecting theoretical advances with practical applications. We explore the development from traditional RS techniques like content-based and collaborative filtering to advanced methods involving deep learning, graph-based models, reinforcement learning, and large language models. We also discuss specialized systems such as context-aware, review-based, and fairness-aware RS. The primary goal of this survey is to bridge theory with practice. It addresses challenges across various sectors, including e-commerce, healthcare, and finance, emphasizing the need for scalable, real-time, and trustworthy solutions. Through this survey, we promote stronger partnerships between academic research and industry practices. The insights offered by this survey aim to guide industry professionals in optimizing RS deployment and to inspire future research directions, especially in addressing emerging technological and societal trends
Abstract:The field of Explainable Artificial Intelligence (XAI) aims to improve the interpretability of black-box machine learning models. Building a heatmap based on the importance value of input features is a popular method for explaining the underlying functions of such models in producing their predictions. Heatmaps are almost understandable to humans, yet they are not without flaws. Non-expert users, for example, may not fully understand the logic of heatmaps (the logic in which relevant pixels to the model's prediction are highlighted with different intensities or colors). Additionally, objects and regions of the input image that are relevant to the model prediction are frequently not entirely differentiated by heatmaps. In this paper, we propose a framework called TbExplain that employs XAI techniques and a pre-trained object detector to present text-based explanations of scene classification models. Moreover, TbExplain incorporates a novel method to correct predictions and textually explain them based on the statistics of objects in the input image when the initial prediction is unreliable. To assess the trustworthiness and validity of the text-based explanations, we conducted a qualitative experiment, and the findings indicated that these explanations are sufficiently reliable. Furthermore, our quantitative and qualitative experiments on TbExplain with scene classification datasets reveal an improvement in classification accuracy over ResNet variants.