Abstract:With the ever-increasing volumes of the Earth observation data present in the archives of large programmes such as Copernicus, there is a growing need for efficient vector representations of the underlying raw data. The approach of extracting feature representations from pretrained deep neural networks is a powerful approach that can provide semantic abstractions of the input data. However, the way this is done for imagery archives containing geospatial data has not yet been defined. In this work, an extension is proposed to an existing community project, Major TOM, focused on the provision and standardization of open and free AI-ready datasets for Earth observation. Furthermore, four global and dense embedding datasets are released openly and for free along with the publication of this manuscript, resulting in the most comprehensive global open dataset of geospatial visual embeddings in terms of covered Earth's surface.
Abstract:IceCloudNet is a novel method based on machine learning able to predict high-quality vertically resolved cloud ice water contents (IWC) and ice crystal number concentrations (N$_\textrm{ice}$). The predictions come at the spatio-temporal coverage and resolution of geostationary satellite observations (SEVIRI) and the vertical resolution of active satellite retrievals (DARDAR). IceCloudNet consists of a ConvNeXt-based U-Net and a 3D PatchGAN discriminator model and is trained by predicting DARDAR profiles from co-located SEVIRI images. Despite the sparse availability of DARDAR data due to its narrow overpass, IceCloudNet is able to predict cloud occurrence, spatial structure, and microphysical properties with high precision. The model has been applied to ten years of SEVIRI data, producing a dataset of vertically resolved IWC and N$_\textrm{ice}$ of clouds containing ice with a 3 kmx3 kmx240 mx15 minute resolution in a spatial domain of 30{\deg}W to 30{\deg}E and 30{\deg}S to 30{\deg}N. The produced dataset increases the availability of vertical cloud profiles, for the period when DARDAR is available, by more than six orders of magnitude and moreover, IceCloudNet is able to produce vertical cloud profiles beyond the lifetime of the recently ended satellite missions underlying DARDAR.
Abstract:The paper centres on an assessment of the modelling approaches for the processing of signals in CW and FMCW radar-based systems for the detection of vital signs. It is shown that the use of the widely adopted phase extraction method, which relies on the approximation of the target as a single point scatterer, has limitations in respect of the simultaneous estimation of both respiratory and heart rates. A method based on a velocity spectrum is proposed as an alternative with the ability to treat a wider range of application scenarios.
Abstract:The monitoring of diver health during emergency events is crucial to ensuring the safety of personnel. A non-invasive system continuously providing a measure of the respiration rate of individual divers is exceedingly beneficial in this context. The paper reports on the application of short-range radar to record the respiration rate of divers within hyperbaric lifeboat environments. Results demonstrate that the respiratory motion can be extracted from the radar return signal applying routine signal processing. Further, evidence is provided that the radar-based approach yields a more accurate measure of respiration rate than an audio signal from a headset microphone. The system promotes an improvement in evacuation protocols under critical operational scenarios.
Abstract:Deep learning techniques are subject to increasing adoption for a wide range of micro-Doppler applications, where predictions need to be made based on time-frequency signal representations. Most, if not all, of the reported applications focus on translating an existing deep learning framework to this new domain with no adjustment made to the objective function. This practice results in a missed opportunity to encourage the model to prioritize features that are particularly relevant for micro-Doppler applications. Thus the paper introduces a micro-Doppler coherence loss, minimized when the normalized power of micro-Doppler oscillatory components between input and output is matched. The experiments conducted on real data show that the application of the introduced loss results in models more resilient to noise.
Abstract:Convolutional neural networks have often been proposed for processing radar Micro-Doppler signatures, most commonly with the goal of classifying the signals. The majority of works tend to disregard phase information from the complex time-frequency representation. Here, the utility of the phase information, as well as the optimal format of the Doppler-time input for a convolutional neural network, is analysed. It is found that the performance achieved by convolutional neural network classifiers is heavily influenced by the type of input representation, even across formats with equivalent information. Furthermore, it is demonstrated that the phase component of the Doppler-time representation contains rich information useful for classification and that unwrapping the phase in the temporal dimension can improve the results compared to a magnitude-only solution, improving accuracy from 0.920 to 0.938 on the tested human activity dataset. Further improvement of 0.947 is achieved by training a linear classifier on embeddings from multiple-formats.
Abstract:The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions and significant variations in the power levels of their contributions. A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented. Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution facilitating their extraction from a mixture signal. The approach is tested on semi-experimental data containing real vital sign signatures and simulated returns from interfering body motions. The application of the proposed network enhances the extraction of the micro-Doppler frequency corresponding to the respiration rate is demonstrated.
Abstract:With the great capabilities of deep classifiers for radar data processing come the risks of learning dataset-specific features that do not generalize well. In this work, the robustness of two deep convolutional architectures, trained and tested on the same data, is evaluated. When standard training practice is followed, both classifiers exhibit sensitivity to subtle temporal shifts of the input representation, an augmentation that carries minimal semantic content. Furthermore, the models are extremely susceptible to adversarial examples. Both small temporal shifts and adversarial examples are a result of a model overfitting on features that do not generalize well. As a remedy, it is shown that training on adversarial examples and temporally augmented samples can reduce this effect and lead to models that generalise better. Finally, models operating on cadence-velocity diagram representation rather than Doppler-time are demonstrated to be naturally more immune to adversarial examples.
Abstract:Deep learning models are increasingly data-hungry, requiring significant resources to collect and compile the datasets needed to train them, with Earth Observation (EO) models being no exception. However, the landscape of datasets in EO is relatively atomised, with interoperability made difficult by diverse formats and data structures. If ever larger datasets are to be built, and duplication of effort minimised, then a shared framework that allows users to combine and access multiple datasets is needed. Here, Major TOM (Terrestrial Observation Metaset) is proposed as this extensible framework. Primarily, it consists of a geographical indexing system based on a set of grid points and a metadata structure that allows multiple datasets with different sources to be merged. Besides the specification of Major TOM as a framework, this work also presents a large, open-access dataset, MajorTOM-Core, which covers the vast majority of the Earth's land surface. This dataset provides the community with both an immediately useful resource, as well as acting as a template for future additions to the Major TOM ecosystem. Access: https://huggingface.co/Major-TOM
Abstract:The advancements in the state of the art of generative Artificial Intelligence (AI) brought by diffusion models can be highly beneficial in novel contexts involving Earth observation data. After introducing this new family of generative models, this work proposes and analyses three use cases which demonstrate the potential of diffusion-based approaches for satellite image data. Namely, we tackle cloud removal and inpainting, dataset generation for change-detection tasks, and urban replanning.