Abstract:The frequent breakdowns and malfunctions of industrial equipment have driven increasing interest in utilizing cost-effective and easy-to-deploy sensors, such as microphones, for effective condition monitoring of machinery. Microphones offer a low-cost alternative to widely used condition monitoring sensors with their high bandwidth and capability to detect subtle anomalies that other sensors might have less sensitivity. In this study, we investigate malfunctioning industrial machines to evaluate and compare anomaly detection performance across different machine types and fault conditions. Log-Mel spectrograms of machinery sound are used as input, and the performance is evaluated using the area under the curve (AUC) score for two different methods: baseline dense autoencoder (AE) and one-class deep Support Vector Data Description (deep SVDD) with different subspace dimensions. Our results over the MIMII sound dataset demonstrate that the deep SVDD method with a subspace dimension of 2 provides superior anomaly detection performance, achieving average AUC scores of 0.84, 0.80, and 0.69 for 6 dB, 0 dB, and -6 dB signal-to-noise ratios (SNRs), respectively, compared to 0.82, 0.72, and 0.64 for the baseline model. Moreover, deep SVDD requires 7.4 times fewer trainable parameters than the baseline dense AE, emphasizing its advantage in both effectiveness and computational efficiency.
Abstract:Echocardiography is the most widely used imaging to monitor cardiac functions, serving as the first line in early detection of myocardial ischemia and infarction. However, echocardiography often suffers from several artifacts including sensor noise, lack of contrast, severe saturation, and missing myocardial segments which severely limit its usage in clinical diagnosis. In recent years, several machine learning methods have been proposed to improve echocardiography views. Yet, these methods usually address only a specific problem (e.g. denoising) and thus cannot provide a robust and reliable restoration in general. On the other hand, cardiac MRI provides a clean view of the heart without suffering such severe issues. However, due to its significantly higher cost, it is often only afforded by a few major hospitals, hence hindering its use and accessibility. In this pilot study, we propose a novel approach to transform echocardiography into the cardiac MRI view. For this purpose, Echo2MRI dataset, consisting of echocardiography and real cardiac MRI image pairs, is composed and will be shared publicly. A dedicated Cycle-consistent Generative Adversarial Network (Cycle-GAN) is trained to learn the transformation from echocardiography frames to cardiac MRI views. An extensive set of qualitative evaluations shows that the proposed transformer can synthesize high-quality artifact-free synthetic cardiac MRI views from a given sequence of echocardiography frames. Medical evaluations performed by a group of cardiologists further demonstrate that synthetic MRI views are indistinguishable from their original counterparts and are preferred over their initial sequence of echocardiography frames for diagnosis in 78.9% of the cases.
Abstract:Deep learning-based informative band selection methods on hyperspectral images (HSI) recently have gained intense attention to eliminate spectral correlation and redundancies. However, the existing deep learning-based methods either need additional post-processing strategies to select the descriptive bands or optimize the model indirectly, due to the parameterization inability of discrete variables for the selection procedure. To overcome these limitations, this work proposes a novel end-to-end network for informative band selection. The proposed network is inspired by the advances in concrete autoencoder (CAE) and dropout feature ranking strategy. Different from the traditional deep learning-based methods, the proposed network is trained directly given the required band subset eliminating the need for further post-processing. Experimental results on four HSI scenes show that the proposed dropout CAE achieves substantial and effective performance levels outperforming the competing methods.
Abstract:Myocardial infarction (MI) is a severe case of coronary artery disease (CAD) and ultimately, its detection is substantial to prevent progressive damage to the myocardium. In this study, we propose a novel view-fusion model named self-attention fusion network (SAF-Net) to detect MI from multi-view echocardiography recordings. The proposed framework utilizes apical 2-chamber (A2C) and apical 4-chamber (A4C) view echocardiography recordings for classification. Three reference frames are extracted from each recording of both views and deployed pre-trained deep networks to extract highly representative features. The SAF-Net model utilizes a self-attention mechanism to learn dependencies in extracted feature vectors. The proposed model is computationally efficient thanks to its compact architecture having three main parts: a feature embedding to reduce dimensionality, self-attention for view-pooling, and dense layers for the classification. Experimental evaluation is performed using the HMC-QU-TAU dataset which consists of 160 patients with A2C and A4C view echocardiography recordings. The proposed SAF-Net model achieves a high-performance level with 88.26% precision, 77.64% sensitivity, and 78.13% accuracy. The results demonstrate that the SAF-Net model achieves the most accurate MI detection over multi-view echocardiography recordings.
Abstract:In this work, we propose a novel approach called Operational Support Estimator Networks (OSENs) for the support estimation task. Support Estimation (SE) is defined as finding the locations of non-zero elements in a sparse signal. By its very nature, the mapping between the measurement and sparse signal is a non-linear operation. Traditional support estimators rely on computationally expensive iterative signal recovery techniques to achieve such non-linearity. Contrary to the convolution layers, the proposed OSEN approach consists of operational layers that can learn such complex non-linearities without the need for deep networks. In this way, the performance of the non-iterative support estimation is greatly improved. Moreover, the operational layers comprise so-called generative \textit{super neurons} with non-local kernels. The kernel location for each neuron/feature map is optimized jointly for the SE task during the training. We evaluate the OSENs in three different applications: i. support estimation from Compressive Sensing (CS) measurements, ii. representation-based classification, and iii. learning-aided CS reconstruction where the output of OSENs is used as prior knowledge to the CS algorithm for an enhanced reconstruction. Experimental results show that the proposed approach achieves computational efficiency and outperforms competing methods, especially at low measurement rates by a significant margin. The software implementation is publicly shared at https://github.com/meteahishali/OSEN.
Abstract:As a consequence of global warming and climate change, the risk and extent of wildfires have been increasing in many areas worldwide. Warmer temperatures and drier conditions can cause quickly spreading fires and make them harder to control; therefore, early detection and accurate locating of active fires are crucial in environmental monitoring. Using satellite imagery to monitor and detect active fires has been critical for managing forests and public land. Many traditional statistical-based methods and more recent deep-learning techniques have been proposed for active fire detection. In this study, we propose a novel approach called Operational U-Nets for the improved early detection of active fires. The proposed approach utilizes Self-Organized Operational Neural Network (Self-ONN) layers in a compact U-Net architecture. The preliminary experimental results demonstrate that Operational U-Nets not only achieve superior detection performance but can also significantly reduce computational complexity.
Abstract:Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) methods. As the number of frequency bands increases, the required number of training samples increases exponentially to achieve a reasonable classification accuracy, also known as the curse of dimensionality. Therefore, separate band selection or dimensionality reduction techniques are often applied before performing any classification task over HSI data. In this study, we investigate recently proposed subspace learning methods for one-class classification (OCC). These methods map high-dimensional data to a lower-dimensional feature space that is optimized for one-class classification. In this way, there is no separate dimensionality reduction or feature selection procedure needed in the proposed classification framework. Moreover, one-class classifiers have the ability to learn a data description from the category of a single class only. Considering the imbalanced labels of the LULC classification problem and rich spectral information (high number of dimensions), the proposed classification approach is well-suited for HSI data. Overall, this is a pioneer study focusing on subspace learning-based one-class classification for HSI data. We analyze the performance of the proposed subspace learning one-class classifiers in the proposed pipeline. Our experiments validate that the proposed approach helps tackle the curse of dimensionality along with the imbalanced nature of HSI data.
Abstract:Restoration of poor quality images with a blended set of artifacts plays a vital role for a reliable diagnosis. Existing studies have focused on specific restoration problems such as image deblurring, denoising, and exposure correction where there is usually a strong assumption on the artifact type and severity. As a pioneer study in blind X-ray restoration, we propose a joint model for generic image restoration and classification: Restore-to-Classify Generative Adversarial Networks (R2C-GANs). Such a jointly optimized model keeps any disease intact after the restoration. Therefore, this will naturally lead to a higher diagnosis performance thanks to the improved X-ray image quality. To accomplish this crucial objective, we define the restoration task as an Image-to-Image translation problem from poor quality having noisy, blurry, or over/under-exposed images to high quality image domain. The proposed R2C-GAN model is able to learn forward and inverse transforms between the two domains using unpaired training samples. Simultaneously, the joint classification preserves the disease label during restoration. Moreover, the R2C-GANs are equipped with operational layers/neurons reducing the network depth and further boosting both restoration and classification performances. The proposed joint model is extensively evaluated over the QaTa-COV19 dataset for Coronavirus Disease 2019 (COVID-19) classification. The proposed restoration approach achieves over 90% F1-Score which is significantly higher than the performance of any deep model. Moreover, in the qualitative analysis, the restoration performance of R2C-GANs is approved by a group of medical doctors. We share the software implementation at https://github.com/meteahishali/R2C-GAN.
Abstract:The band selection in the hyperspectral image (HSI) data processing is an important task considering its effect on the computational complexity and accuracy. In this work, we propose a novel framework for the band selection problem: Self-Representation Learning (SRL) with Sparse 1D-Operational Autoencoder (SOA). The proposed SLR-SOA approach introduces a novel autoencoder model, SOA, that is designed to learn a representation domain where the data are sparsely represented. Moreover, the network composes of 1D-operational layers with the non-linear neuron model. Hence, the learning capability of neurons (filters) is greatly improved with shallow architectures. Using compact architectures is especially crucial in autoencoders as they tend to overfit easily because of their identity mapping objective. Overall, we show that the proposed SRL-SOA band selection approach outperforms the competing methods over two HSI data including Indian Pines and Salinas-A considering the achieved land cover classification accuracies. The software implementation of the SRL-SOA approach is shared publicly at https://github.com/meteahishali/SRL-SOA.
Abstract:In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a direct mapping for the Support Estimation (SE) task in a representation-based classification problem. We further propose and demonstrate that representation-based methods (sparse or collaborative representation) can be used in well-designed regression problems. To the best of our knowledge, this is the first representation-based method proposed for performing a regression task by utilizing the modified CSENs; and hence, we name this novel approach as Representation-based Regression (RbR). The initial version of CSENs has a proxy mapping stage (i.e., a coarse estimation for the support set) that is required for the input. In this study, we improve the CSEN model by proposing Compressive Learning CSEN (CL-CSEN) that has the ability to jointly optimize the so-called proxy mapping stage along with convolutional layers. The experimental evaluations using the KITTI 3D Object Detection distance estimation dataset show that the proposed method can achieve a significantly improved distance estimation performance over all competing methods. Finally, the software implementations of the methods are publicly shared at https://github.com/meteahishali/CSENDistance.