Abstract:The frequent breakdowns and malfunctions of industrial equipment have driven increasing interest in utilizing cost-effective and easy-to-deploy sensors, such as microphones, for effective condition monitoring of machinery. Microphones offer a low-cost alternative to widely used condition monitoring sensors with their high bandwidth and capability to detect subtle anomalies that other sensors might have less sensitivity. In this study, we investigate malfunctioning industrial machines to evaluate and compare anomaly detection performance across different machine types and fault conditions. Log-Mel spectrograms of machinery sound are used as input, and the performance is evaluated using the area under the curve (AUC) score for two different methods: baseline dense autoencoder (AE) and one-class deep Support Vector Data Description (deep SVDD) with different subspace dimensions. Our results over the MIMII sound dataset demonstrate that the deep SVDD method with a subspace dimension of 2 provides superior anomaly detection performance, achieving average AUC scores of 0.84, 0.80, and 0.69 for 6 dB, 0 dB, and -6 dB signal-to-noise ratios (SNRs), respectively, compared to 0.82, 0.72, and 0.64 for the baseline model. Moreover, deep SVDD requires 7.4 times fewer trainable parameters than the baseline dense AE, emphasizing its advantage in both effectiveness and computational efficiency.
Abstract:Condition monitoring of induction machines is crucial to prevent costly interruptions and equipment failure. Mechanical faults such as misalignment and rotor issues are among the most common problems encountered in industrial environments. To effectively monitor and detect these faults, a variety of sensors, including accelerometers, current sensors, temperature sensors, and microphones, are employed in the field. As a non-contact alternative, thermal imaging offers a powerful monitoring solution by capturing temperature variations in machines with thermal cameras. In this study, we propose using 2-dimensional Self-Organized Operational Neural Networks (Self-ONNs) to diagnose misalignment and broken rotor faults from thermal images of squirrel-cage induction motors. We evaluate our approach by benchmarking its performance against widely used Convolutional Neural Networks (CNNs), including ResNet, EfficientNet, PP-LCNet, SEMNASNet, and MixNet, using a Workswell InfraRed Camera (WIC). Our results demonstrate that Self-ONNs, with their non-linear neurons and self-organizing capability, achieve diagnostic performance comparable to more complex CNN models while utilizing a shallower architecture with just three operational layers. Its streamlined architecture ensures high performance and is well-suited for deployment on edge devices, enabling its use also in more complex multi-function and/or multi-device monitoring systems.
Abstract:Hyperspectral image (HSI) classification is an important task in many applications, such as environmental monitoring, medical imaging, and land use/land cover (LULC) classification. Due to the significant amount of spectral information from recent HSI sensors, analyzing the acquired images is challenging using traditional Machine Learning (ML) methods. As the number of frequency bands increases, the required number of training samples increases exponentially to achieve a reasonable classification accuracy, also known as the curse of dimensionality. Therefore, separate band selection or dimensionality reduction techniques are often applied before performing any classification task over HSI data. In this study, we investigate recently proposed subspace learning methods for one-class classification (OCC). These methods map high-dimensional data to a lower-dimensional feature space that is optimized for one-class classification. In this way, there is no separate dimensionality reduction or feature selection procedure needed in the proposed classification framework. Moreover, one-class classifiers have the ability to learn a data description from the category of a single class only. Considering the imbalanced labels of the LULC classification problem and rich spectral information (high number of dimensions), the proposed classification approach is well-suited for HSI data. Overall, this is a pioneer study focusing on subspace learning-based one-class classification for HSI data. We analyze the performance of the proposed subspace learning one-class classifiers in the proposed pipeline. Our experiments validate that the proposed approach helps tackle the curse of dimensionality along with the imbalanced nature of HSI data.