Abstract:Echocardiography is the most widely used imaging to monitor cardiac functions, serving as the first line in early detection of myocardial ischemia and infarction. However, echocardiography often suffers from several artifacts including sensor noise, lack of contrast, severe saturation, and missing myocardial segments which severely limit its usage in clinical diagnosis. In recent years, several machine learning methods have been proposed to improve echocardiography views. Yet, these methods usually address only a specific problem (e.g. denoising) and thus cannot provide a robust and reliable restoration in general. On the other hand, cardiac MRI provides a clean view of the heart without suffering such severe issues. However, due to its significantly higher cost, it is often only afforded by a few major hospitals, hence hindering its use and accessibility. In this pilot study, we propose a novel approach to transform echocardiography into the cardiac MRI view. For this purpose, Echo2MRI dataset, consisting of echocardiography and real cardiac MRI image pairs, is composed and will be shared publicly. A dedicated Cycle-consistent Generative Adversarial Network (Cycle-GAN) is trained to learn the transformation from echocardiography frames to cardiac MRI views. An extensive set of qualitative evaluations shows that the proposed transformer can synthesize high-quality artifact-free synthetic cardiac MRI views from a given sequence of echocardiography frames. Medical evaluations performed by a group of cardiologists further demonstrate that synthetic MRI views are indistinguishable from their original counterparts and are preferred over their initial sequence of echocardiography frames for diagnosis in 78.9% of the cases.
Abstract:The success of modern deep learning is attributed to two key elements: huge amounts of training data and large model sizes. Where a vast amount of data allows the model to learn more features, the large model architecture boosts the learning capability of the model. However, both these factors result in prolonged training time. In some practical applications such as edge-based learning and federated learning, limited-time budgets necessitate more efficient training methods. This paper proposes an effective technique for training arbitrary deep learning models within fixed time constraints utilizing sample importance and dynamic ranking. The proposed method is extensively evaluated in both classification and regression tasks in computer vision. The results consistently show clear gains achieved by the proposed method in improving the learning performance of various state-of-the-art deep learning models in both regression and classification tasks.
Abstract:Most state-of-the-art crowd counting methods use color (RGB) images to learn the density map of the crowd. However, these methods often struggle to achieve higher accuracy in densely crowded scenes with poor illumination. Recently, some studies have reported improvement in the accuracy of crowd counting models using a combination of RGB and thermal images. Although multimodal data can lead to better predictions, multimodal data might not be always available beforehand. In this paper, we propose the use of generative adversarial networks (GANs) to automatically generate thermal infrared (TIR) images from color (RGB) images and use both to train crowd counting models to achieve higher accuracy. We use a Pix2Pix GAN network first to translate RGB images to TIR images. Our experiments on several state-of-the-art crowd counting models and benchmark crowd datasets report significant improvement in accuracy.
Abstract:Recent advances in deep learning techniques have achieved remarkable performance in several computer vision problems. A notably intuitive technique called Curriculum Learning (CL) has been introduced recently for training deep learning models. Surprisingly, curriculum learning achieves significantly improved results in some tasks but marginal or no improvement in others. Hence, there is still a debate about its adoption as a standard method to train supervised learning models. In this work, we investigate the impact of curriculum learning in crowd counting using the density estimation method. We performed detailed investigations by conducting 112 experiments using six different CL settings using eight different crowd models. Our experiments show that curriculum learning improves the model learning performance and shortens the convergence time.
Abstract:Federated Learning (FL) is a rapidly growing field in machine learning that allows data to be trained across multiple decentralized devices. The selection of clients to participate in the training process is a critical factor for the performance of the overall system. In this survey, we provide a comprehensive overview of the state-of-the-art client selection techniques in FL, including their strengths and limitations, as well as the challenges and open issues that need to be addressed. We cover conventional selection techniques such as random selection where all or partial random of clients is used for the trained. We also cover performance-aware selections and as well as resource-aware selections for resource-constrained networks and heterogeneous networks. We also discuss the usage of client selection in model security enhancement. Lastly, we discuss open issues and challenges related to clients selection in dynamic constrained, and heterogeneous networks.
Abstract:Visual crowd counting estimates the density of the crowd using deep learning models such as convolution neural networks (CNNs). The performance of the model heavily relies on the quality of the training data that constitutes crowd images. In harsh weather such as fog, dust, and low light conditions, the inference performance may severely degrade on the noisy and blur images. In this paper, we propose the use of Pix2Pix generative adversarial network (GAN) to first denoise the crowd images prior to passing them to the counting model. A Pix2Pix network is trained using synthetic noisy images generated from original crowd images and then the pretrained generator is then used in the inference engine to estimate the crowd density in unseen, noisy crowd images. The performance is tested on JHU-Crowd dataset to validate the significance of the proposed method particularly when high reliability and accuracy are required.
Abstract:Over the last decade, there has been a remarkable surge in interest in automated crowd monitoring within the computer vision community. Modern deep-learning approaches have made it possible to develop fully-automated vision-based crowd-monitoring applications. However, despite the magnitude of the issue at hand, the significant technological advancements, and the consistent interest of the research community, there are still numerous challenges that need to be overcome. In this article, we delve into six major areas of visual crowd analysis, emphasizing the key developments in each of these areas. We outline the crucial unresolved issues that must be tackled in future works, in order to ensure that the field of automated crowd monitoring continues to progress and thrive. Several surveys related to this topic have been conducted in the past. Nonetheless, this article thoroughly examines and presents a more intuitive categorization of works, while also depicting the latest breakthroughs within the field, incorporating more recent studies carried out within the last few years in a concise manner. By carefully choosing prominent works with significant contributions in terms of novelty or performance gains, this paper presents a more comprehensive exposition of advancements in the current state-of-the-art.
Abstract:Automatic crowd counting using density estimation has gained significant attention in computer vision research. As a result, a large number of crowd counting and density estimation models using convolution neural networks (CNN) have been published in the last few years. These models have achieved good accuracy over benchmark datasets. However, attempts to improve the accuracy often lead to higher complexity in these models. In real-time video surveillance applications using drones with limited computing resources, deep models incur intolerable higher inference delay. In this paper, we propose (i) a Lightweight Crowd Density estimation model (LCDnet) for real-time video surveillance, and (ii) an improved training method using curriculum learning (CL). LCDnet is trained using CL and evaluated over two benchmark datasets i.e., DroneRGBT and CARPK. Results are compared with existing crowd models. Our evaluation shows that the LCDnet achieves a reasonably good accuracy while significantly reducing the inference time and memory requirement and thus can be deployed over edge devices with very limited computing resources.
Abstract:The rapid outbreak of COVID-19 pandemic invoked scientists and researchers to prepare the world for future disasters. During the pandemic, global authorities on healthcare urged the importance of disinfection of objects and surfaces. To implement efficient and safe disinfection services during the pandemic, robots have been utilized for indoor assets. In this paper, we envision the use of drones for disinfection of outdoor assets in hospitals and other facilities. Such heterogeneous assets may have different service demands (e.g., service time, quantity of the disinfectant material etc.), whereas drones have typically limited capacity (i.e., travel time, disinfectant carrying capacity). To serve all the facility assets in an efficient manner, the drone to assets allocation and drone travel routes must be optimized. In this paper, we formulate the capacitated vehicle routing problem (CVRP) to find optimal route for each drone such that the total service time is minimized, while simultaneously the drones meet the demands of each asset allocated to it. The problem is solved using mixed integer programming (MIP). As CVRP is an NP-hard problem, we propose a lightweight heuristic to achieve sub-optimal performance while reducing the time complexity in solving the problem involving a large number of assets.
Abstract:Deep learning models require an enormous amount of data for training. However, recently there is a shift in machine learning from model-centric to data-centric approaches. In data-centric approaches, the focus is to refine and improve the quality of the data to improve the learning performance of the models rather than redesigning model architectures. In this paper, we propose CLIP i.e., Curriculum Learning with Iterative data Pruning. CLIP combines two data-centric approaches i.e., curriculum learning and dataset pruning to improve the model learning accuracy and convergence speed. The proposed scheme applies loss-aware dataset pruning to iteratively remove the least significant samples and progressively reduces the size of the effective dataset in the curriculum learning training. Extensive experiments performed on crowd density estimation models validate the notion behind combining the two approaches by reducing the convergence time and improving generalization. To our knowledge, the idea of data pruning as an embedded process in curriculum learning is novel.