Abstract:In this paper, we propose a framework to enhance the robustness of the neural models by mitigating the effects of process-induced and aging-related variations of analog computing components on the accuracy of the analog neural networks. We model these variations as the noise affecting the precision of the activations and introduce a denoising block inserted between selected layers of a pre-trained model. We demonstrate that training the denoising block significantly increases the model's robustness against various noise levels. To minimize the overhead associated with adding these blocks, we present an exploration algorithm to identify optimal insertion points for the denoising blocks. Additionally, we propose a specialized architecture to efficiently execute the denoising blocks, which can be integrated into mixed-signal accelerators. We evaluate the effectiveness of our approach using Deep Neural Network (DNN) models trained on the ImageNet and CIFAR-10 datasets. The results show that on average, by accepting 2.03% parameter count overhead, the accuracy drop due to the variations reduces from 31.7% to 1.15%.
Abstract:In this paper, we present a YOLO-based framework for layout hotspot detection, aiming to enhance the efficiency and performance of the design rule checking (DRC) process. Our approach leverages the YOLOv8 vision model to detect multiple hotspots within each layout image, even when dealing with large layout image sizes. Additionally, to enhance pattern-matching effectiveness, we introduce a novel approach to augment the layout image using information extracted through Principal Component Analysis (PCA). The core of our proposed method is an algorithm that utilizes PCA to extract valuable auxiliary information from the layout image. This extracted information is then incorporated into the layout image as an additional color channel. This augmentation significantly improves the accuracy of multi-hotspot detection while reducing the false alarm rate of the object detection algorithm. We evaluate the effectiveness of our framework using four datasets generated from layouts found in the ICCAD-2019 benchmark dataset. The results demonstrate that our framework achieves a precision (recall) of approximately 83% (86%) while maintaining a false alarm rate of less than 7.4\%. Also, the studies show that the proposed augmentation approach could improve the detection ability of never-seen-before (NSB) hotspots by about 10%.
Abstract:This paper presents ARCO, an adaptive Multi-Agent Reinforcement Learning (MARL)-based co-optimizing compilation framework designed to enhance the efficiency of mapping machine learning (ML) models - such as Deep Neural Networks (DNNs) - onto diverse hardware platforms. The framework incorporates three specialized actor-critic agents within MARL, each dedicated to a distinct aspect of compilation/optimization at an abstract level: one agent focuses on hardware, while two agents focus on software optimizations. This integration results in a collaborative hardware/software co-optimization strategy that improves the precision and speed of DNN deployments. Concentrating on high-confidence configurations simplifies the search space and delivers superior performance compared to current optimization methods. The ARCO framework surpasses existing leading frameworks, achieving a throughput increase of up to 37.95% while reducing the optimization time by up to 42.2% across various DNNs.
Abstract:A novel high-fan-in differential superconductor neuron structure designed for ultra-high-performance Spiking Neural Network (SNN) accelerators is presented. Utilizing a high-fan-in neuron structure allows us to design SNN accelerators with more synaptic connections, enhancing the overall network capabilities. The proposed neuron design is based on superconductor electronics fabric, incorporating multiple superconducting loops, each with two Josephson Junctions. This arrangement enables each input data branch to have positive and negative inductive coupling, supporting excitatory and inhibitory synaptic data. Compatibility with synaptic devices and thresholding operation is achieved using a single flux quantum (SFQ) pulse-based logic style. The neuron design, along with ternary synaptic connections, forms the foundation for a superconductor-based SNN inference. To demonstrate the capabilities of our design, we train the SNN using snnTorch, augmenting the PyTorch framework. After pruning, the demonstrated SNN inference achieves an impressive 96.1% accuracy on MNIST images. Notably, the network exhibits a remarkable throughput of 8.92 GHz while consuming only 1.5 nJ per inference, including the energy consumption associated with cooling to 4K. These results underscore the potential of superconductor electronics in developing high-performance and ultra-energy-efficient neural network accelerator architectures.
Abstract:This paper presents a mixed-computation neural network processing approach for edge applications that incorporates low-precision (low-width) Posit and low-precision fixed point (FixP) number systems. This mixed-computation approach employs 4-bit Posit (Posit4), which has higher precision around zero, for representing weights with high sensitivity, while it uses 4-bit FixP (FixP4) for representing other weights. A heuristic for analyzing the importance and the quantization error of the weights is presented to assign the proper number system to different weights. Additionally, a gradient approximation for Posit representation is introduced to improve the quality of weight updates in the backpropagation process. Due to the high energy consumption of the fully Posit-based computations, neural network operations are carried out in FixP or Posit/FixP. An efficient hardware implementation of a MAC operation with a first Posit operand and FixP for a second operand and accumulator is presented. The efficacy of the proposed low-precision mixed-computation approach is extensively assessed on vision and language models. The results show that, on average, the accuracy of the mixed-computation is about 1.5% higher than that of FixP with a cost of 0.19% energy overhead.
Abstract:In this work, to limit the number of required attention inference hops in memory-augmented neural networks, we propose an online adaptive approach called A2P-MANN. By exploiting a small neural network classifier, an adequate number of attention inference hops for the input query is determined. The technique results in elimination of a large number of unnecessary computations in extracting the correct answer. In addition, to further lower computations in A2P-MANN, we suggest pruning weights of the final FC (fully-connected) layers. To this end, two pruning approaches, one with negligible accuracy loss and the other with controllable loss on the final accuracy, are developed. The efficacy of the technique is assessed by using the twenty question-answering (QA) tasks of bAbI dataset. The analytical assessment reveals, on average, more than 42% fewer computations compared to the baseline MANN at the cost of less than 1% accuracy loss. In addition, when used along with the previously published zero-skipping technique, a computation count reduction of up to 68% is achieved. Finally, when the proposed approach (without zero-skipping) is implemented on the CPU and GPU platforms, up to 43% runtime reduction is achieved.
Abstract:In this paper, first, a hardware-friendly pruning algorithm for reducing energy consumption and improving the speed of Long Short-Term Memory (LSTM) neural network accelerators is presented. Next, an FPGA-based platform for efficient execution of the pruned networks based on the proposed algorithm is introduced. By considering the sensitivity of two weight matrices of the LSTM models in pruning, different sparsity ratios (i.e., dual-ratio sparsity) are applied to these weight matrices. To reduce memory accesses, a row-wise sparsity pattern is adopted. The proposed hardware architecture makes use of computation overlapping and pipelining to achieve low-power and high-speed. The effectiveness of the proposed pruning algorithm and accelerator is assessed under some benchmarks for natural language processing, binary sentiment classification, and speech recognition. Results show that, e.g., compared to a recently published work in this field, the proposed accelerator could provide up to 272% higher effective GOPS/W and the perplexity error is reduced by up to 1.4% for the PTB dataset.
Abstract:Approximate computing is being considered as a promising design paradigm to overcome the energy and performance challenges in computationally demanding applications. If the case where the accuracy can be configured, the quality level versus energy efficiency or delay also may be traded-off. For this technique to be used, one needs to make sure a satisfactory user experience. This requires employing error predictors to detect unacceptable approximation errors. In this work, we propose a scheduling-aware feature selection method which leverages the intermediate results of the hardware accelerator to improve the prediction accuracy. Additionally, it configures the error predictors according to the energy consumption and latency of the system. The approach enjoys the flexibility of the prediction time for a higher accuracy. The results on various benchmarks demonstrate significant improvements in the prediction accuracy compared to the prior works which used only the accelerator inputs for the prediction.