We introduce FAIR-SIGHT, an innovative post-hoc framework designed to ensure fairness in computer vision systems by combining conformal prediction with a dynamic output repair mechanism. Our approach calculates a fairness-aware non-conformity score that simultaneously assesses prediction errors and fairness violations. Using conformal prediction, we establish an adaptive threshold that provides rigorous finite-sample, distribution-free guarantees. When the non-conformity score for a new image exceeds the calibrated threshold, FAIR-SIGHT implements targeted corrective adjustments, such as logit shifts for classification and confidence recalibration for detection, to reduce both group and individual fairness disparities, all without the need for retraining or having access to internal model parameters. Comprehensive theoretical analysis validates our method's error control and convergence properties. At the same time, extensive empirical evaluations on benchmark datasets show that FAIR-SIGHT significantly reduces fairness disparities while preserving high predictive performance.