Abstract:We propose FACTER, a fairness-aware framework for LLM-based recommendation systems that integrates conformal prediction with dynamic prompt engineering. By introducing an adaptive semantic variance threshold and a violation-triggered mechanism, FACTER automatically tightens fairness constraints whenever biased patterns emerge. We further develop an adversarial prompt generator that leverages historical violations to reduce repeated demographic biases without retraining the LLM. Empirical results on MovieLens and Amazon show that FACTER substantially reduces fairness violations (up to 95.5%) while maintaining strong recommendation accuracy, revealing semantic variance as a potent proxy of bias.
Abstract:This paper presents ARCO, an adaptive Multi-Agent Reinforcement Learning (MARL)-based co-optimizing compilation framework designed to enhance the efficiency of mapping machine learning (ML) models - such as Deep Neural Networks (DNNs) - onto diverse hardware platforms. The framework incorporates three specialized actor-critic agents within MARL, each dedicated to a distinct aspect of compilation/optimization at an abstract level: one agent focuses on hardware, while two agents focus on software optimizations. This integration results in a collaborative hardware/software co-optimization strategy that improves the precision and speed of DNN deployments. Concentrating on high-confidence configurations simplifies the search space and delivers superior performance compared to current optimization methods. The ARCO framework surpasses existing leading frameworks, achieving a throughput increase of up to 37.95% while reducing the optimization time by up to 42.2% across various DNNs.